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ABSTRACT

This paper proposes a new streaming algorithm to learn low-rank
structures of tensor data using the recently proposed tensor-tensor
product (t-product) and tensor singular value decomposition (t-SVD)
algebraic framework. It reformulates the tensor low-rank represen-
tation (TLRR) problem using the equivalent bifactor model of the
tensor nuclear norm, where the tensor dictionary is updated based on
the newly collected data and representations. Compared to TLRR,
the proposed method processes tensor data in an online fashion and
makes the memory cost independent of the data size. Experimental
results on three benchmark datasets demonstrate the superior per-
formance, efficiency and robustness of the proposed algorithm over
state-of-the-art methods.

Index Terms— Clustering, online learning, tensor low-rank rep-
resentation

1. INTRODUCTION

Subspace clustering, whose objective is to segment the data points
into different groups such that each cluster corresponds to one sub-
space, is one of the fundamental tasks in machine learning and com-
puter vision [1]. In the past two decades, a number of subspace clus-
tering algorithms have been developed in the literature [2, 3, 4, 5, 6],
among which spectral clustering based approaches [4, 5, 6] have
gained a lot of attention due to their promising performance; two
typical such methods include sparse subspace clustering (SSC) [6]
and low-rank representation (LRR) [5]. Both of them use the idea
of self-expressiveness and seek a sparse or low-rank representation
of the data. The clustering result can be obtained by means of spec-
tral clustering (e.g., Ncut [7]). In order to enhance the computation
and storage efficiency, an online LRR method for streaming data has
been introduced in [8], which implements LRR based on stochastic
optimization with guaranteed convergence.

Although subspace clustering has been well studied in the matrix
domain, many real-world data are multiway, e.g., videos, hyperspec-
tral images, and multichannel electroencephalography (EEG) sig-
nals. In traditional subspace clustering literature, multi-dimensional
data are always flattened into vectors such that conventional matrix-
based algorithms can be applied. This simplistic approach can de-
grade performance because the intrinsic multi-dimensional structure
of data is destroyed [9, 10, 11]. To address this problem, some re-
cent works have been proposed using tensor algebraic frameworks
[12, 9], which exploit the multi-dimensional structure of tensor data
[13, 14, 15, 16, 17]. In particular, suppose that we are given a third-
order data tensor, where each lateral slice of this tensor corresponds
to one data sample. Motivated by the t-product [12, 9], one type
of the tensor-tensor products for third-order tensors, the samples
can be assumed to be drawn from a union of tensor subspaces (see

Definition 8). Similar to matrix-based subspace clustering methods,
each sample can now be expressed as a t-linear combination of other
samples and the representation tensor coefficients suggest the ten-
sor subspace membership of the samples. Concretely, sparse sub-
module clustering (SSmC) [13] imposes a sparsity constraint on the
representation tensor. In tensor LRR (TLRR) [15], the tensor nu-
clear norm [11] is used to recover the low-rank structure of tensor
data. However, these methods are often computationally expensive
for large-scale tensor data, and even storing these tensors is prob-
lematic since the memory requirements grow rapidly with the size
of data.

In this paper, we propose an online TLRR learning method,
termed online low-rank tensor subspace clustering (OLRTSC), to
recover low-rank tensor data and cluster them from streaming multi-
dimensional data. OLRTSC reduces the memory cost of TLRR
and mitigates the computational bottleneck of the tensor nuclear
norm regularizer in TLRR. Our work is closely related to that in [8],
which performs online subspace clustering. The difference between
this work and [8] lies in the fact that OLRTSC preserves the multi-
dimensional structure in tensor data and directly seeks a low-rank
representation of the tensor. Numerical experiments on real-world
image datasets demonstrate the effectiveness of OLRTSC.

The rest of this paper is organized as follows. Section 2 provides
some notations and preliminaries. In Section 3 we describe our pro-
posed online clustering algorithm. We present experimental results
in Section 4 to show efficacy of the proposed method and conclude
in Section 5.

2. NOTATIONS AND PRELIMINARIES

In this section, we introduce some notations and basic definitions
for tensors. Throughout this paper, we use calligraphy letters for
tensors, e.g., A, bold uppercase letters for matrices, e.g., A, bold
lowercase letters for vectors, e.g., a, and non-bold letters for scalars,
e.g., a. The (i, j)-th element of a matrix A is denoted by Ai,j and
its i-th column is denoted by ai. The identity matrix is denoted by
I of appropriate dimension. We denote a third-order tensor as A ∈
Rn1×n2×n3 and its (i, j, k)-th entry as Ai,j,k. We use A(:, :, i) or
A(i) to denote its i-th frontal slice. Any lateral slice of size n1×1×
n3 is denoted as

−→
A . In particular, we use

−→
A i to denote the i-th lateral

slice of tensorA. The (i, j)-th mode-1, mode-2 and mode-3 fibers of
A are represented byA(:, i, j),A(i, :, j) andA(i, j, :), respectively.
We denote Â the discrete Fourier transform (DFT) along mode-3 of
A, that is, Â = fft(A, [ ], 3). Similarly, A can be computed from
Â via inverse DFT, i.e., A = ifft(Â, [ ], 3). The `1 and Frobenius
norms of A are defined as ‖A‖1 =

∑
i,j,k |Ai,j,k| and ‖A‖F =√∑

i,j,k |Ai,j,k|2, respectively. Let Â ∈ Cn1n3×n2n3 be a block
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diagonal matrix with its i-th block on diagonal as the i-th frontal
slice Â(i) of Â, i.e.,

Â = bdiag(Â) =


Â(1)

Â(2)

. . .
Â(n3)

 .
Also, we define the block circulant matrix bcirc(A) ∈ Rn1n3×n2n3

of A as

bcirc(A) =


A(1) A(n3) . . . A(2)

A(2) A(1) . . . A(3)

...
...

. . .
...

A(n3) A(n3−1) . . . A(1)

 .
Then we define the block vectorizing and its opposite operation as

bvec(A) =


A(1)

A(2)

...
A(n3)

 ∈ Rn1n3×n2 , bvfold(bvec(A)) = A.

Definition 1 (t-product [9]). The t-product between two tensors
A ∈ Rn1×n2×n3 and B ∈ Rn2×n4×n3 is defined as A ∗ B =
bvfold(bcirc(A) · bvec(B)) ∈ Rn1×n4×n3 .

Definition 2 (Tensor transpose). Let A ∈ Rn1×n2×n3 , then AT is
an n2×n1×n3 tensor obtained by transposing each ofA’s frontal
slices and then reversing the order of the transposed frontal slices 2
through n3.

Definition 3 (Identity tensor). The identity tensor I ∈ Rn1×n1×n3

is a tensor whose first frontal slice is the n1×n1 identity matrix and
all other frontal slices are zeros.

Definition 4 (Orthogonal tensor). A tensor Q ∈ Rn1×n1×n3 is or-
thogonal ifQT ∗ Q = Q ∗ QT = I.

Definition 5 (Tensor singular value decomposition (t-SVD) [9]). Let
A ∈ Rn1×n2×n3 , then it can be factorized as

A = U ∗ S ∗ VT ,

where U ∈ Rn1×n1×n3 , V ∈ Rn2×n2×n3 are orthogonal, and S ∈
Rn1×n2×n3 is a tensor whose frontal slices are diagonal matrices.

Definition 6 (Tensor tubal rank [9]). The tensor tubal rank, denoted
as rankt(A), is defined as the number of nonzero singular tubes of S,
where S is from the t-SVD ofA = U ∗ S ∗ VT . That is, rankt(A) =
#{i : S(i, i, :) 6= 0}.

Definition 7 (Tensor nuclear norm [11]). Let A = U ∗ S ∗ VT be
the t-SVD ofA ∈ Rn1×n2×n3 . The tensor nuclear norm ‖A‖∗ ofA
is defined as ‖A‖∗ =

∑r
i=1 Si,i,1, where r = rankt(A).

Let Kn1
n3

denote the set of all n1 × 1 × n3 lateral slices. Then
a set of tensors {

−→
D 1, . . . ,

−→
D p} ⊆ Kn1

n3
, stored as lateral slices of a

tensor D ∈ Rn1×p×n3 , is said to be linearly independent if there is
not a nonzero tensor C ∈ Rp×1×n3 such that D ∗ C = 0 [15].

Definition 8 (Tensor subspace [15]). Given a set {
−→
D 1, . . . ,

−→
D p} ⊆

Kn1
n3

in which the elements
−→
D i’s are linearly independent, the set

Sn1
n3

= {Y|Y = D∗C, ∀C ∈ Rp×1×n3} is called a tensor subspace
of dimension dim(Sn1

n3
) = p. Here,

−→
D 1,
−→
D 2, . . . ,

−→
D p are called the

spanning basis of Sn1
n3

.

3. ONLINE LOW-RANK TENSOR SUBSPACE
CLUSTERING

3.1. Problem Formulation

Consider a collection of N 2-D data samples
−→
Z 1,
−→
Z 2, . . . ,

−→
ZN of

size n1×n3, that are drawn from a union of L low-dimensional ten-
sor subspaces {`Sn1

n3
}L`=1. We arrange them as lateral slices to make

a third-order tensor Z of size n1 ×N × n3. Tensor low-rank repre-
sentation (TLRR) seeks a low-rank representation of the tensor data
using a predefined dictionary to infer the clusters of samples. Math-
ematically, TLRR can be formulated as the following optimization
problem [15]:

min
X ,E

λ1

2
‖Z − Y ∗ X − E‖2F + ‖X‖∗ + λ2‖E‖1, (1)

where Y ∈ Rn1×N×n3 is a predefined atom dictionary, X ∈
RN×N×n3 is the low-rank representation of the data over Y , E
is a tensor representing the approximation errors of the data, and
λ1 and λ2 are penalty parameters. Now suppose the 2-D samples
−→
Z 1,
−→
Z 2, . . . ,

−→
ZN are revealed sequentially, our goal is to effi-

ciently learn the representation tensor X and the error tensor E in an
online fashion. Assume the tubal rank of X is at most d, we use an
equivalent form of the tensor nuclear norm of X as follows [18]:

‖X‖∗ = min
U∈RN×d×n3

V∈RN×d×n3

X=U∗VT

n3

2
(‖U‖2F + ‖V‖2F ). (2)

Thus (1) can be reformulated as the following non-convex optimiza-
tion problem:

min
U,V,E

λ1

2
‖Z − Y ∗ U ∗ VT − E‖2F +

n3

2
(‖U‖2F + ‖V‖2F ) + λ2‖E‖1.

Unlike [18], however, the sizes of U and V are both proportional
to N and the dictionary Y is partially observed at each time t, thus
making the method in [18] infeasible to TLRR. Similar to [8], we
introduce an auxiliary variable D = Y ∗ U ∈ Rn1×d×n3 , which
we refer to as a basis dictionary, and get an equivalent reformulation
given by

min
D,U,V,E

λ1

2
‖Z − Y ∗ U ∗ VT − E‖2F +

n3

2
(‖U‖2F + ‖V‖2F )

+ λ2‖E‖1 s.t. D = Y ∗ U . (3)

We incorporate the constraint into the objective function and pose the
goal of online TLRR in terms of the following optimization problem:

min
D,U,V,E

λ1

2
‖Z − D ∗ VT − E‖2F +

n3

2
(‖U‖2F + ‖V‖2F )

+ λ2‖E‖1 +
λ3

2
‖D − Y ∗ U‖2F , (4)

where λ3 is used to control the reconstruction quality of the basis
dictionary D.

3.2. Online Optimization for OLRTSC

In this section, we describe our online algorithm for optimizing the
objective function in (4). Let

−→
Z t,
−→
Y t,
−→
E t,
−→
U t and

−→
V t denote the
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Algorithm 1 Online Low-Rank Tensor Subspace Clustering

Input: Sequentially observed data Z ∈ Rn1×N×n3 , Y ∈
Rn1×N×n3 , parameters λ1, λ2 and λ3.
Initialize: Random initial basis D0 ∈ Rn1×d×n3 , M0 = 0,
A0 = 0, and B0 = 0.

1: for t = 1, 2, . . . , N do
2: Access the t-th sample

−→
Z t and the t-th atom

−→
Y t.

3: Compute coefficient and error tensors (See Algorithm 2):
{
−→
V t,
−→
E t} = argmin−→V ,−→E

˜̀(Dt−1,
−→
V ,
−→
E ;
−→
Z t).

4: Compute the coefficients
−→
U t by minimizing˜̀

2(
−→
Y t,Dt−1,Mt−1,

−→
U ).

5: Update the accumulation tensors:

Mt =Mt−1 +
−→
Y t ∗

−→
U Tt ,

At = At−1 +
−→
V t ∗

−→
V Tt ,

Bt = Bt−1 + (
−→
Z t −

−→
E t) ∗

−→
V Tt .

6: Update the basis Dt (See Algorithm 3):

D̂t = argmin
D̂

tr
(
D̂T D̂(

λ1

2
Ât +

λ3

2
I)
)

− tr
(
D̂T (λ1B̂t + λ3M̂t)

)
.

7: end for
Output: Optimal basis DN .

t-th lateral slice of tensors Z , Y , E , UT and VT , respectively. We
define

˜̀(D,−→V ,−→E ;−→Z ) def
=

λ1

2
‖
−→
Z −D ∗

−→
V −

−→
E ‖2F +

n3

2
‖
−→
V ‖2F + λ2‖

−→
E ‖1,

`(D;
−→
Z ) def

= min−→
V ,
−→
E

˜̀(D,−→V ,−→E ;−→Z ),

h̃(D,U ;Y) def
=

N∑
t=1

n3

2
‖
−→
U t‖2F +

λ3

2
‖D −

N∑
t=1

−→
Y t ∗

−→
U Tt ‖2F ,

h(D;Y) def
= min

U
h̃(D,U ;Y).

These definitions allow us to rewrite (4) as

min
D

min
U,V,E

N∑
t=1

˜̀(D,−→V t,−→E t;−→Z t) + h̃(D,U ;Y), (5)

which amounts to minimizing the empirical loss function:

fN (D) def
=

1

N

N∑
t=1

`(D;
−→
Z t) +

1

N
h(D;Y). (6)

We summarize our online low-rank tensor subspace clustering
approach in Algorithm 1. The key idea of our algorithm is that at
each iteration t, we minimize the loss function with respect to

−→
V t,−→

E t and
−→
U t given the previousDt−1, and then update the dictionary

Dt by minimizing the cumulative loss.

Optimize
−→
V and

−→
E : Given Dt−1 in the previous iteration, we

Algorithm 2 Updating V and E

Input: D ∈ Rn1×d×n3 ,
−→
Z ∈ Rn1×1×n3 , parameters λ1 and λ2.

Initialize:
−→
E = 0.

1: D̂ = fft(D, [ ], 3),
−̂→
Z = fft(

−→
Z , [ ], 3).

2: while not converged do

3:
−̂→
E = fft(

−→
E , [ ], 3).

4: for k = 1, 2, . . . , n3 do

5:
−̂→
V

(k)

=
(
(D̂(k))T D̂(k)+ n3

λ1
I
)−1

(D̂(k))T (
−̂→
Z

(k)

−
−̂→
E

(k)

).
6: end for
7:

−→
V = ifft(

−̂→
V , [ ], 3).

8:
−→
E = Sλ2/λ1

[
−→
Z −D ∗

−→
V ].

9: end while
Output:

−→
V and

−→
E .

obtain the optimal solution {
−→
V t,
−→
E t} by solving

{
−→
V t,
−→
E t} = argmin

−→
V ,
−→
E

λ1

2
‖
−→
Z t −Dt−1 ∗

−→
V −

−→
E ‖2F

+
n3

2
‖
−→
V ‖2F + λ2‖

−→
E ‖1. (7)

Both
−→
V t and

−→
E t can be optimized using the coordinate descent al-

gorithm [19] as described in Algorithm 2. In step 8 of Algorithm 2,
Sε[·] is the soft-thresholding operator [20]:

Sε[x] =


x− ε if x > ε,

x+ ε if x < −ε,
0 othervise.

Optimize
−→
U : We now move onto the step of minimizing

h̃(D,U ;Y) with respect to U . Unlike the scheme of optimizing
−→
V t

and
−→
E t, whose solutions only depend on the new sample, however,

we need to load the entire dictionary Y in order to obtain the optimal
−→
U t. In order to circumvent this problem, we define the accumula-
tion tensorMt−1 =

∑t−1
i=1

−→
Y i ∗

−→
U Ti and solve

−→
U t by minimizing

the following proxy function

˜̀
2(
−→
Y t,Dt−1,Mt−1,

−→
U t)

def
=

n3

2
‖
−→
U t‖2F +

λ3

2
‖Dt−1 −Mt−1 −

−→
Y t ∗

−→
U Tt ‖2F . (8)

Using the fact that ‖
−→
U t‖2F = ‖

−→
U Tt ‖2F , we define

−→
W =

−→
U Tt and

transform (8) into the Fourier domain to obtain

min
−̂→
W

n3

2
‖
−̂→
W‖2F +

λ3

2
‖D̂t−1 − M̂t−1 −

−̂→
Y t ⊗

−̂→
W‖2F , (9)

where ⊗ denotes slicewise multiplication. We break (9) into n3

problems and each frontal slice of
−̂→
W has a closed-form solution

−̂→
W

(k)

=
(
‖
−̂→
Y

(k)

t ‖22 + n3/λ3

)−1
(D̂

(k)
t−1 − M̂

(k)
t−1)

T −̂→Y
(k)

t ,

where
−̂→
W

(k)

and
−̂→
Y

(k)

t denote the k-th frontal slices of
−̂→
W and

−̂→
Y t,

respectively. After solving each frontal slice of
−̂→
W , we can get the

solution of
−→
W as

−→
W = ifft(

−̂→
W, [ ], 3) and then set

−→
U t =

−→
WT . We
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Table 1. Clustering accuracy and running time (in seconds) on COIL-20 and Weizmann datasets.
Data Metric OLRTSC OLRTSC-F TORPCA TLRR SSmC OLRSC OLRSC-F ORPCA LRR SSC

COIL-20 ACC 0.7118 0.8083 0.2181 0.6937 0.6722 0.6736 0.7299 0.6819 0.6799 0.7764
Time 78.88 78.88 64.67 64.02 457.5 11.90 11.90 11.71 85.81 15.41

Weizmann ACC 0.5833 0.8633 0.3400 0.7867 0.7733 0.3633 0.3933 0.7167 0.5967 0.5567
Time 26.44 26.44 22.96 47.11 16.68 3.62 3.62 3.60 10.12 1.50

update only
−→
U t at a time while keeping the other

−→
U i’s (i < t) fixed

and each
−→
U t is sequentially updated only when the t-th atom

−→
Y t

is observed. Hence, our minimization strategy can be seen as a one-
pass block coordinate descent algorithm for the function h̃(D,U ;Y).

Optimize D: When {
−→
V i,
−→
E i,
−→
U i}ti=1 are readily available to

us, the update of Dt is equivalent to solving

Dt = argmin
D

t∑
i=1

λ1

2
‖
−→
Z i −D ∗

−→
V i −

−→
E i‖2F +

λ3

2
‖D −Mt‖2F

= argmin
D

λ1

2
‖Zt −D ∗ Vt − Et‖2F +

λ3

2
‖D −Mt‖2F ,

(10)

where Zt = [
−→
Z 1, . . . ,

−→
Z t] ∈ Rn1×t×n3 , Vt = [

−→
V 1, . . . ,

−→
V t] ∈

Rd×t×n3 and Et = [
−→
E 1, . . . ,

−→
E t] ∈ Rn1×t×n3 . Let D̂t =

bdiag(D̂t), then (10) can again be transformed into the Fourier
domain as

D̂t = argmin
D̂

λ1

2
‖Ẑt − D̂V̂t − Êt‖2F +

λ3

2
‖D̂− M̂t‖2F

= argmin
D̂

λ1

2
tr
(
(Ẑt − D̂V̂t − Êt)

T (Ẑt − D̂V̂t − Êt)
)

+
λ3

2
tr
(
(D̂− M̂t)

T (D̂− M̂t)
)

= argmin
D̂

tr
(
D̂T D̂(

λ1

2
V̂tV̂

T
t +

λ3

2
I)
)

− tr
(
D̂T (λ1(Ẑt − Êt)V̂

T
t + λ3M̂t)

)
= argmin

D̂

tr
(
D̂T D̂(

λ1

2
Ât +

λ3

2
I)
)

− tr
(
D̂T (λ1B̂t + λ3M̂t)

)
= (λ1B̂t + λ3M̂t)(λ1Ât + λ3I)

−1, (11)

where At =
∑t
i=1

−→
V i ∗

−→
V Ti , Bt =

∑t
i=1(
−→
Z i −

−→
E i) ∗

−→
V Ti and

tr(·) denotes the trace operation. We use block-coordinate descent
[19] in the Fourier domain to update the dictionary due to its ease of
computation. See more details in Algorithm 3.

3.3. Complexity Analysis

Memory Cost. First, notice that we need to load Dt−1,Mt−1 ∈
Rn1×d×n3 and one sample

−→
Z t into the memory to obtain {

−→
V t,
−→
E t,
−→
U t},

which costs O(n1dn3). Second, all the past information required to
update Dt has been stored in the accumulation tensors At, Bt and
Mt, which only costs at most O(n1dn3). Hence, the memory cost
of OLRTSC is O(n1dn3) per iteration.
Computational Complexity. In terms of computational complexity
of the algorithm in each iteration, we first notice that it is computa-
tionally efficient to compute {

−→
V t,
−→
E t} as one can use block coordi-

nate descent method in [21] which enjoys linear convergence. Next,

Algorithm 3 Updating D
Input: D ∈ Rn1×d×n3 in the previous iteration, accumulation ten-
sorsM, A and B, and parameters λ1 and λ3.

1: D̂ = fft(D, [ ], 3).
2: M̂ = fft(M, [ ], 3), Â = fft(A, [ ], 3), and B̂ = fft(B, [ ], 3).
3: for k = 1, 2, . . . , n3 do
4: Ã = λ1Â

(k) + λ3I and B̃ = λ1B̂
(k) + λ3M̂

(k).
5: for j = 1, 2, . . . , d do
6: D̂(:, j, k) = D̂(:, j, k)− 1

Ãj,j
(D̂(k)ãj − b̃j).

7: end for
8: end for

Output: D = ifft(D̂, [ ], 3).

−→
U t requiresO(n1dn3 +n1n3 logn3) operations to conduct simple
matrix-vector multiplication and the Fast Fourier Transform (FFT).
Moreover, it is easy to verify that the complexity of Step 5 of Algo-
rithm 1 is O(n1dn3 + n1n3 logn3). Finally, computing Dt costs
O(n1n3d

2) as we only need to update D̂t in practice.

3.4. A Fully Online Scheme

So far, we have discussed an algorithm to optimize the TLRR prob-
lem (1) in an online fashion. Similar to [8], we use the dataset itself
as the dictionary Y in practice. For clustering purpose, we first col-
lect all the

−→
U t’s and

−→
V t’s and compute the representation tensor

X = U ∗VT , then apply spectral clustering [7] on an affinity matrix
Θ whose (i, j)-th entry Θi,j = ‖X (i, j, :)‖1 + ‖X (j, i, :)‖1 to ob-
tain final clustering. The memory cost in this case is O(N2n3). Al-
ternatively, as suggested in [8], we can also define vt =

∑n3
k=1

−→
V

(k)
t

for t = 1, . . . , N and utilize the well-known k-means clustering on
vt’s. Thus a fully online implementation can be achieved with only
O(Ld) memory usage.

4. EXPERIMENTAL RESULTS

In this section, we conduct experiments to evaluate the performance
of our proposed approach.

4.1. Datasets

Three widely used image clustering benchmark datasets are selected
in our experiments.

The COIL-20 dataset1 consists of 1440 grayscale images of 20
objects. Each object has 72 images, which are taken with poses vary-
ing at an interval of 5 degrees. We downsample the images to 32×32
pixels.

1https://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php
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Table 2. Clustering accuracy and running time (in seconds) on USPS dataset.
N Metric OLRTSC OLRTSC-F TORPCA TLRR SSmC OLRSC OLRSC-F ORPCA LRR SSC

1000 ACC 0.7033 0.4262 0.5968 0.3899 0.5595 0.4157 0.5034 0.5484 0.4462 0.4360
Time 15.10 15.10 14.31 9.84 144 2.25 2.25 2.20 7.40 3.45

2000 ACC 0.6781 0.3961 0.6367 0.3802 0.5451 0.4100 0.4902 0.5640 0.3909 0.3953
Time 27.65 27.65 25.26 19.42 702.7 4.42 4.42 4.68 10.35 23.34

3000 ACC 0.6538 0.4015 0.6246 0.3756 0.5448 0.4169 0.5071 0.5756 0.3773 0.3802
Time 39.49 39.49 34.65 32.61 1667.9 6.79 6.79 6.98 12.84 59.92

4000 ACC 0.6467 0.4033 0.6911 0.3678 0.5474 0.4148 0.5083 0.5889 0.3680 0.3951
Time 53.90 53.90 52.25 42.34 3538.7 8.97 8.97 9.17 15.57 106.7

The Weizmann face database2 contains 512×352 grayscale im-
ages of 28 individuals, where each subject has 30 frontal images with
variations of pose, illumination and expression. We select a subset
of this dataset composed of images from subjects 11–20, resulting in
N = 300. We downsample the images by a factor of 8 along each
axis and crop them into 60× 40 pixels.

The USPS dataset [22] consists of 9298 images of 10 hand-
written digits, and each image has 16 × 16 pixels. In each
experiment, N` ∈ {100, 200, 300, 400} images are randomly
selected from the training set for each of the 10 digits; hence
N ∈ {1000, 2000, 3000, 4000}. For each image, we randomly shift
the digit horizontally with respect to the center by 3 pixels either
side (left or right). We run experiments 20 times for each N , and
average results are reported.

4.2. Compared Methods

We compare the performance of OLRTSC with several state-of-the-
art online learning methods and batch algorithms, including tensor
online robust PCA (TORPCA) [18], online low-rank subspace clus-
tering (OLRSC) [8], and online robust PCA (ORPCA) [23], TLRR
[15], SSmC [13], LRR [5], and SSC [6]. The OLRTSC (resp.,
OLRSC) followed by k-means clustering is denoted by OLRTSC-
F (resp., OLRSC-F). For TORPCA, we perform spectral clustering
on Θ =

∑n3
k=1 A(k) with A = R0 ∗ RT0 , where R0 is from the t-

SVD of Z0 = L0 ∗S0 ∗RT0 and Z0 is the clean tensor recovered by
TORPCA. For ORPCA, we perform spectral clustering on R0R

T
0 ,

where R0 is the row space of Z0 = L0Σ0R
T
0 and Z0 is the clean

matrix recovered by ORPCA.

4.3. Parameter Settings

We set λ1 = 1, λ2 = 1/
√
n1n3 and λ3 =

√
t/n1n3, where t is the

iteration counter. Here, we use d = min(3L, n1) as an upper bound
of the tensor tubal rank of X , where L is the number of classes. We
follow the default parameter settings for the baselines.

4.4. Comparative Results

The results are reported in Tables 1 and 2. We run our algorithm
and TORPCA with only 1 epoch. For fair comparison, the running
time of spectral clustering or k-means is excluded so we can fo-
cus on comparing the efficiency of the algorithms themselves. We
can make the following observations: 1) OLRTSC (or OLRTSC-F)
achieves the best performance in most cases on all three datasets in
terms of clustering accuracy. 2) Our method is able to identify the
samples at a superior rate compared to TLRR. 3) Compared to TOR-
PCA, OLRTSC takes comparable running time but shows noticeable

2http://www.wisdom.weizmann.ac.il/ /vision/FaceBase/

improvement in accuracy. 4) The k-means alternative (OLRTSC-
F) outperforms the spectral clustering counterpart on COIL-20 and
Weizmann datasets, which makes OLRTSC more robust and scal-
able.

5. CONCLUSION

In this paper, we proposed a novel extension of the tensor low-rank
representation, termed online low-rank tensor subspace clustering
(OLRTSC), for streaming tensor data clustering. Experimental re-
sults on three real-world datasets showed the usefulness of our al-
gorithm and its superiority over the state-of-the-art clustering algo-
rithms. Our future work includes theoretical analysis of the perfor-
mance and convergence behavior of the algorithm.
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