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ABSTRACT

This paper addresses the problem of learning meaningful
human action attributes from high-dimensional video se-
quences based on union-of-subspaces (UoS) model. The
model hypothesizes that each action attribute is represented
by a subspace. It puts forth an extension of existing low-rank
representation (LRR), termed the clustering-aware structure-
constrained low-rank representation (CS-LRR) model, for
unsupervised learning of human action attributes. The pro-
posed CS-LRR model overcomes the shortcomings of exist-
ing techniques by its ability to handle disjoint subspaces, and
by performing optimal spectral clustering of the subspaces.
An efficient linear alternating direction method (LADM) is
developed to solve the CS-LRR optimization problem. A hu-
man action or activity is represented as a sequence of transi-
tions from one action attribute to another and can be uniquely
represented by a subspace transition vector. These subspace
transition vectors are used for human action recognition. The
effectiveness of the proposed model is demonstrated through
experiments on two real-world datasets for action recognition.

1. INTRODUCTION

A complex human activity or a high-level event can be con-
sidered to be a hierarchical model [1], consisting of a se-
quence of simpler human actions. Each action can further
be divided into a sequence of movements of the human body,
which we call action attributes [2]. In the past, a significant
fraction of the video analytics literature has been devoted to
the study of learning attributes in human actions [3, 4]. In
this paper, we propose to represent human action attributes
based on the union of subspaces (UoS) model [5, 6], which is
motivated by the fact that high-dimensional video data usu-
ally lie in a union of low-dimensional subspaces instead of
being uniformly distributed in the high-dimensional ambient
space [5]. The hypothesis of this model is that each action
attribute is represented by a subspace. A human action or
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activity can then be represented as a sequence of transitions
from one attribute to another and, hence, can be represented
by a subspace transition vector. Even though multiple ac-
tions can share action attributes, each action or activity can be
uniquely represented by its subspace transition vector when
the attributes are learned using the UoS model. Thus, these
transition vectors can be used for human action recognition.

High-dimensional data can be clustered into subspaces by
applying spectral clustering on a graph associated with the
data. Recently, the authors in [5] developed sparse subspace
clustering (SSC) technique, where spectral clustering is ap-
plied on an “`1 graph.” This has been extended into a hier-
archical structure to learn subspaces at multiple resolutions
in [7]. To capture the global structure of the data, low-rank
representation (LRR) models without and with sparsity con-
straints have been proposed in [6] and [8], respectively. It has
been proved that LRR can achieve perfect subspace cluster-
ing results under the condition that the subspaces underlying
the signals are independent [6, 9]. However, this condition
is hard to satisfy in many real situations. To handle the case
of disjoint subspaces, Tang et al. extended LRR by impos-
ing restrictions on the structure of the solution. This method
is called structure-constrained LRR (SC-LRR) in [10]. Ex-
isting LRR based subspace clustering techniques use spectral
clustering as a post-processing step on the graph, which can
lead to sub-optimal results [11]. To overcome this issue, we
propose a clustering-aware structure-constrained LRR (CS-
LRR) model to obtain an optimal clustering of human action
attributes from a large collection of video sequences in an un-
supervised manner by introducing spectral clustering into the
optimization problem. In order to demonstrate effectiveness
of the CS-LRR model and the proposed learning algorithm,
we carry out numerical experiments using real video datasets.
Results of these experiments demonstrate the effectiveness of
our approach and its superiority over the state-of-the-art sub-
space clustering methods for human action recognition.

The following notation will be used throughout the paper.
We use non-bold letters to represent scalars, bold lowercase
letters to denote vectors, and bold uppercase letters to denote
matrices. The i-th element of a vector a is denoted by a(i)
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and the (i, j)-th element of a matrix A is denoted by aij . The
i-th row and the j-th column of a matrix A are denoted by ai

and aj , respectively. The zero matrix is denoted by 0 and the
identity matrix is denoted by I. The only vector norm used
in this paper is the `2 norm, which is represented by ‖ · ‖2.
We use a variety of different norms on matrices. The ma-
trix `1 and `2,1 norms are denoted by ‖A‖1 =

∑
i,j |aij | and

‖A‖2,1 =
∑
j ‖aj‖2, respectively. The `∞ norm is defined

as ‖A‖∞ = maxi,j |aij |. The spectral norm of a matrix A,
i.e., the largest singular value of A, is denoted by ‖A‖. The
Frobenius norm and the nuclear norm (the sum of singular
values) of a matrix A are denoted by ‖A‖F and ‖A‖∗, re-
spectively. Finally, the Euclidean inner product between two
matrices is 〈A,B〉 = tr(ATB), where (·)T and tr(·) denote
transpose and trace operations, respectively.

2. PROBLEM FORMULATION

In this section, we give a brief review of low-rank represen-
tation (LRR) and structure-constrained LRR (SC-LRR), and
formulate the problem studied in this paper. Consider a col-
lection of N data points X = [x1,x2, . . . ,xN ], where each
xi ∈ Rm is drawn from a union of L subspaces {S`}L`=1.
The task of subspace clustering is to segment the data points
according to their respective subspaces. Low-rank representa-
tion (LRR) is a recently proposed subspace clustering method
[6], which aims to find the lowest-rank representation for the
data using a dictionary to reveal the intrinsic geometric struc-
ture of the data. Mathematically, LRR can be formulated as
the following optimization problem [6]:

min
Z,E
‖Z‖∗ + λ‖E‖ι s.t. X = AZ + E, (1)

where A is a dictionary that linearly spans the data space, Z
is the low-rank representation of the data over A, and E is a
matrix representing the reconstruction errors in the data. The
nuclear norm is the convex relaxation of the rank function,
‖ · ‖ι indicates a certain regularization strategy involving E,
and λ is a positive parameter which sets the tradeoff between
low rankness of the matrix Z and the reconstruction error. To
cluster the data points in X, the data matrix X is used as the
dictionary in (1) [9].

After obtaining the representation coefficient matrix Z,
one can define an affinity matrix W as W = |Z|+|ZT |

2 , where
| · | denotes the element-wise absolute value operation. Then
we can apply spectral clustering [12] on W by solving the
following problem:

min
F

tr(FT (D−W)F) s.t. FTF = I, (2)

where F ∈ RN×L is the cluster indicator matrix and D is a
diagonal matrix with diagonal elements dii =

∑
j wij . The

solution F consists of the eigenvectors corresponding to the
smallest L eigenvalues of the Laplacian matrix M = D−W.
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Fig. 1. Illustration of our approach to create the matrix X.

To improve upon LRR for disjoint subspace clustering,
Tang et al. [10] proposed SC-LRR model, which can be writ-
ten as follows:

min
Z,E
‖Z‖∗ + α‖B� Z‖1 + λ‖E‖2,1 s.t. X = AZ + E,

where α and λ are penalty parameters, B is a pre-defined
weight matrix, and � denotes the Hadamard product. The
`2,1 norm is used to model sample-specific corruptions and
outliers. It has been shown in [10] that by designing an
appropriate matrix B, the optimal solution of Z is block-
diagonal when the data are drawn from disjoint subspaces
in the noiseless case. In [10], the (i, j)-th entry of B is de-
fined as bij = 1 − exp(− 1−|xTi xj |

σ ), where σ is the mean
of all 1 − |xTi xj |’s. The matrix B penalizes affinities be-
tween data samples from different clusters, while rewarding
affinities between data samples from the same cluster. As
discussed in [11], almost all the existing subspace clustering
methods use spectral clustering as the post-processing step,
whose solution may be sub-optimal. Instead, here, we pro-
pose a clustering-aware structure-constrained LRR (CS-LRR)
model to address this issue by solving the following problem:

min
Z,F,E

‖Z‖∗ + α‖B� Z‖1 + βtr
(
FT (D− |Z|+ |Z

T |
2

)F
)

+ λ‖E‖ι
s.t. X = XZ + E, FTF = I, (3)

where α, β and λ are penalty parameters. The number of
clusters, L, is assumed to be known a priori in this paper,
whereas the estimation ofLwill be considered as future work.

To perform action attribute clustering, we consider the ac-
tion interest region in each frame of an action sequence deter-
mined by a bounding box and divide the action interest region
into a grid of size nσ×nσ . Then the HOG (histograms of ori-
ented gradients) feature is extracted for each block [13], and
the orientations are quantized into 9 bins. Therefore, the HOG
feature of every frame can be stored into a 2-dimensional ma-
trix X̂i ∈ Rnb×9, where nb denotes the number of blocks in
the action interest region, and the HOG feature vector of each
block corresponds to a row in X̂i. We vectorize the HOG fea-
tures and normalize each vector to unit `2 norm, forming in-
dividual data samples in the data matrix X ∈ Rm×N , where



m = nb × 9, as shown in Figure 1. We set the error term
‖E‖ι ≡

∑N
i=1 ‖Êi‖2,1, to model HOG feature orientation-

specific corruptions, where Êi denotes the reconstruction er-
ror with respect to X̂i.

3. OPTIMIZATION APPROACH

In this section, we propose an algorithm to solve (3) by us-
ing the linearized alternating direction method (LADM) [14].
By introducing an auxiliary variable Q to make the objective
function of (3) separable, the problem (3) can be reformulated
as

min
Z,Q,F,E

‖Z‖∗ + α‖B�Q‖1 + βtr
(
FT (D− |Q|+ |Q

T |
2

)F
)

+ λ
N∑
i=1

‖Êi‖2,1

s.t. X = XZ + E, FTF = I, Z = Q. (4)

The augmented Lagrangian function of (4) is

L(Z,Q,F,E,Γ1,Γ2)

= ‖Z‖∗ + α‖B�Q‖1 + βtr
(
FT (D− |Q|+ |Q

T |
2

)F
)

+ λ

N∑
i=1

‖Êi‖2,1 + 〈Γ1,X−XZ−E〉+ 〈Γ2,Z−Q〉

+
µ

2
(‖X−XZ−E‖2F + ‖Z−Q‖2F ), (5)

where Γ1 and Γ2 are Lagrangian multipliers and µ is a penalty
parameter. The optimization of (5) can be solved iteratively
by minimizing L with respect to Z, Q, F and E one at a time,
with the other variables being fixed. The LADM algorithm of
CS-LRR is outlined in Algorithm 1. The optimization prob-
lem in steps 2 and 4 can be solved by using singular value
thresholding operator (SVT) [15] and eigendecomposition of
Mk+1, respectively. Here, we only address the details of the
solutions of Q and E in the interest of available space.

Update Q when fixing other variables: When other vari-
ables are fixed, the problem of updating Q is

min
Q

α‖B�Q‖1 + βtr
(
(Fk)T (D− |Q|+ |Q

T |
2

)Fk
)

+
µk

2
‖Q− (Zk+1 +

Γk2
µk

)‖2F . (6)

Note that we can simplify tr((Fk)T (D− |Q|+|Q
T |

2 )Fk) as

tr((Fk)T (D− |Q|+|Q
T |

2 )Fk) = ‖Θk � Q‖1, where θkij =
1
2‖f

k,i − fk,j‖22. Here, fk,i and fk,j denote the i-th and the j-
th row of the matrix Fk, respectively. Therefore, the problem
(6) is equivalent to the following problem:

min
Q

α‖(B +
β

α
Θk)�Q‖1 +

µk

2
‖Q− (Zk+1 +

Γk2
µk

)‖2F ,

Algorithm 1: Solving Problem (4) by LADM
Input: The data matrix X and matrix B, and
parameters α, β and λ.
Initialize: Z0 = Q0 = Θ0 = Γ0

1 = Γ0
2 = 0, ρ = 1.1,

η > ‖X‖2, µ0 = 0.1, µmax = 1030, ε = 10−8, k = 0.
1: while not converged do
2: Fix other variables and update Z:

Zk+1 = argminZ ‖Z‖∗ +
ηµk

2 ‖Z− Zk + (XT (XZ−
X + Ek − Γk1

µk
) + (Z−Qk +

Γk2
µk

))/η‖2F .
3: Fix other variables and update Q:

Qk+1 = argminQ α‖(B + β
αΘk)�Q‖1 + µk

2 ‖Q−
(Zk+1 +

Γk2
µk

)‖2F .
4: Compute the Laplacian matrix:

Mk+1 = Dk+1 − |Q
k+1|+|(Qk+1)T |

2 and update F by
Fk+1 = argminFTF=I tr(F

TMk+1F).
5: Fix other variables and update E:

Ek+1 =
argminE λ‖E‖ι +

µk

2 ‖E− (X−XZk+1 +
Γk1
µk

)‖2F .
6: Update Lagrange multiplier:

Γk+1
1 = Γk1 + µk(X−XZk+1 −Ek+1),

Γk+1
2 = Γk2 + µk(Zk+1 −Qk+1).

7: Update the parameter µk+1 by
µk+1 = min(µmax, ρµ

k).
8: Check the convergence conditions and break if
‖X−XZk+1 −Ek+1‖∞ ≤ ε, ‖Zk+1 −Qk+1‖∞ ≤ ε.

9: Update k by k = k + 1.
10: end while
Output: The optimal low-rank representation Z∗.

which has a closed-form solution given in [10, Proposition 3].
Update E when fixing other variables: When other vari-

ables are fixed, the problem for updating E can be written as

min
E
λ

N∑
i=1

‖Êi‖2,1 +
µk

2
‖X−XZk+1 −E +

Γk1
µk
‖2F .

For the sake of presentation, we define Ck+1 = X−XZk+1+
Γk1
µk

. This problem can be decomposed into N independent
subproblems, where we update the i-th column of E (i.e., ei)
by solving the following problem:

Êk+1
i = argmin

Êi

λ‖Êi‖2,1 +
µk

2
‖Êi − Ĉk+1

i ‖2F , (7)

where Ĉk+1
i ∈ Rnb×9 is the reshaped “image” of the vector

ck+1
i . The problem (7) can be solved by the `2,1 minimization

operator [6].
After obtaining Z∗, we set the coefficients below a

given threshold to be zeros, and we denote the final rep-
resentation matrix by Ẑ. By defining the affinity matrix
W = |Ẑ|+|ẐT |

2 , we apply spectral clustering [12] to obtain the



subspace clustering result, with the final clusters denoted by
{X` ∈ Rm×N`}L`=1. Finally, we estimate the subspaces S`’s
underlying X`’s by identifying their orthonormal bases P`’s
using the signals in each cluster. To be specific, we obtain
eigendecomposition of the covariance matrix C` = X`X

T
`

as C` = U`Σ`U
T
` , where Σ` = diag(λ1, . . . , λN`) is

a diagonal matrix (λ1 ≥ λ2 ≥ · · · ≥ λN` ) and U` =
[u1, . . . ,uN` ]. Then the dimension of the subspace S`, de-
noted by d`, is estimated based on the energy threshold, i.e.,

d` = argmind

∑d
q=1 λq∑N`
q=1 λq

≥ γ, where γ is a predefined thresh-

old and is set close to 1 for better representation. In this
paper, we set γ = 0.98. The orthonormal basis of S` can then
be written as P` = [u1, . . . ,ud` ].

4. ACTION RECOGNITION USING CS-LRR

In this section, we describe the classification procedure to per-
form action recognition using the subspaces learned from CS-
LRR. We first compute the distances between every training
and test sequence. Let Φ = [φ1,φ2, . . . ,φ|Y |] and Φ̂ =

[φ̂1, φ̂2, . . . , φ̂|Ŷ |] denote two video sequences of lengths |Y |
and |Ŷ |, respectively. We first apply Dynamic Time Warp-
ing (DTW) [16] to align the two action sequences using the
HOG feature vectors and define PΦ,Φ̂ = {φiv , φ̂jv}

V
v=1 to

be the optimal alignment path computed from DTW, where
V is the length of the optimal path. Then we assign every
vector in these two sequences to the closest subspace in S`’s
and we use ψ ∈ R|Y | and ψ̂ ∈ R|Ŷ | to denote the vectors
which contain the resulting subspace assignment indexes of Φ
and Φ̂, respectively. Based on the optimal alignment path P,
the distance dist(Φ, Φ̂) between these two action sequences
is defined as the average of the normalized subspace distances

on the alignment path: dist(Φ, Φ̂) =

∑V
v=1 du(Sψ(iv)

,S
ψ̂(jv)

)

V ,

where du(S`,Ŝ̀) =

√
1−

tr(PT` P ̂̀PT̂̀ P`)

max(d`,d ̂̀) [17]. Finally, we

use the k nearest neighbor (k-NN) classifier to recognize ac-
tions based on sequence-to-sequence distances, i.e., a test se-
quence is declared to be in the class for which the average
distance between the test sequence and the k nearest training
sequences is the smallest.

5. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our proposed
method for human action recognition and compare our ap-
proach with several union-of-subspaces learning methods on
Weizmann dataset [18] and Ballet dataset [3]. We compare
the performance of CS-LRR with Low-Rank Representa-
tion (LRR) [6], Sparse Subspace Clustering (SSC) [5], Least
Square Regression (LSR) [19], and Structure-Constrained
LRR (SC-LRR) [10]. For these methods, we tune the param-
eters to achieve their best performance.

The Weizmann dataset consists of 10 different actions:
walk, run, jump, gallop sideways, bend, one-hand wave,
two-hands wave, jump in place, jumping jack, and skip.
Each action is performed by 9 subjects. We evaluate all the
subspace/attribute learning approaches based on a leave-one-
subject-out experiment. The original resolution of the frames
is 180 × 144. We align all the sequences and crop them into
88×64 frames, then the HOG features are extracted with grid
of size nσ = 8, resulting in m = 792. We set L = 20 in the
experiment as we expect every action to be associated with
2 attributes. We perform CS-LRR with parameters α = 1.4,
β = 0.2, and λ = 0.8. The results are listed in Table 1.
We can see that by representing the human actions using the
attributes learned by CS-LRR, we are able to recognize the
actions at a superior rate compared to other techniques.

Table 1. Recognition results (%) on different datasets
Data ↓ Method → CS-LRR LRR SSC LSR SC-LRR

Weizmann [18] 83.33 73.33 62.22 72.22 75.56
Ballet [3] 61.02 54.24 47.46 40.68 55.93

The Ballet dataset contains 44 video sequences of 8
unique actions. The eight actions are left-to-right hand open-
ing, right-to-left hand opening, standing hand opening, leg
swinging, jumping, turning, hopping, and standing still. Each
video may contain several actions. Finally, we have 59 video
clips and each video clip contains only one action. We crop
all the video frames into 288 × 288 pixels and extract HOG
descriptor of every frame with grid of size nσ = 32; hence
m = 729. Since there is no significant motion between
consecutive frames, instead of using HOG features of each
frame separately, we take the sum of the HOG features of two
adjacent frames at a time and the sum is used as the feature of
two adjacent frames. We perform CS-LRR with parameters
α = 0.6, β = 0.1, and λ = 0.2. We evaluate the subspace
learning approaches based on a leave-one-sequence-out ex-
periment, and we set L = 10 for all union-of-subspaces learn-
ing methods. The classification results are listed in Table 1.
We can see that our proposed method again outperforms all
other subspace clustering methods.

6. CONCLUSION

The proposed clustering-aware structure-constrained low-
rank representation (CS-LRR) model overcomes the limita-
tions of existing techniques by its ability to handle disjoint
subspaces and perform optimal spectral clustering of the
subspaces. The human action attributes generated by the
proposed approach are a better representation of the move-
ments of the human body than those generated by existing
techniques. Thus, CS-LRR model produces better action
recognition performance than other techniques when applied
on real-world datasets that were used in our experiments.
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