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ABSTRACT
In this paper, computer-based techniques for stylistic anal-
ysis of paintings are applied to the five panels of the 14th
century Peruzzi Altarpiece by Giotto di Bondone. Features
are extracted by combining a dual-tree complex wavelet
transform with a hidden Markov tree (HMT) model. Hi-
erarchical clustering is used to identify stylistic keywords
in image patches, and keyword frequencies are calculated
for sub-images that each contains many patches. A genera-
tive hierarchical Bayesian model learns stylistic patterns of
keywords; these patterns are then used to characterize the
styles of the sub-images; this in turn, permits to discriminate
between paintings. Results suggest that such unsupervised
probabilistic topic models can be useful to distill characteris-
tic elements of style.

Index Terms— Painting Analysis, Wavelet Transforms,
Hidden Markov Trees, Topic Models, Machine Learning

1. INTRODUCTION

In recent years wavelet methods have contributed to art his-
tory through their application to forgery detection [1], linking
of underdrawing and overpainting [2], and uncovering ele-
ments of style [3, 4]. The wavelet transform is a powerful tool
which captures local features of an image at different resolu-
tions; the characteristics of wavelet coefficients at different
scales can be analyzed via hidden Markov tree models. When
applied to brushwork, the combination of these feature ex-
traction methods and machine learning algorithms is able to
separate high-resolution digital scans of paintings by Vincent
van Gogh from paintings by other artists (see Johnson et al.
[5]). Given the features extracted from the wavelet coeffi-
cients of the scanned images, several different classifiers can
be usefully applied (see [2, 3] for examples).

In this paper we seek to uncover the intrinsic styles in a
dataset provided by the North Carolina Museum of Art, con-
sisting of high-resolution scans of five panels attributed to

T. W. (tong.wu.ee@rutgers.edu) is with the Department of Electri-
cal and Computer Engineering, Rutgers University. G. P. (gungorpo-
latkan@gmail.com) is with Twitter Inc. D. S. and W. B. (david.steel,
william.p.brown@ncdcr.gov) are with the North Carolina Museum of Art.
I. D. (ingrid@math.duke.edu) is with the Department of Mathematics, Duke
University. R. C. (robert.calderbank@duke.edu) is with the Department of
Computer Science, Duke University. T. W. performed the work while at Duke
University. This work was supported in part by the Department of Homeland
Security under grant HSHQDC-11-C.

Giotto di Bondone. In contrast to prior work [2], we lack side
information such as underdrawings of different styles. As in
[1, 2], we extract features from the dataset by combining a
dual-tree complex wavelet transform [6] with hidden Markov
trees [7]. In the absence of a training set (such as a set of over-
painting patches labeled by underdrawing styles in [2]), we
cannot apply supervised learning algorithms. Our main con-
tribution is to use probabilistic topic models to model differ-
ent styles present in each painting, where a style corresponds
to a topic in the bag of words model. This produces a mean-
ingful discrimination between the five paintings based on the
style distribution in each painting.

This paper is organized as follows. Section 2 reviews
some background of wavelet-based HMT models applied to
feature representation. Section 3 introduces our post analysis
strategy via topic models. Results and discussion are provided
in Section 4; conclusions and future work are in Section 5.

2. FEATURE EXTRACTION

2.1. Color Representation

We first introduce the HSL color representation, commonly
used in computer graphics, and easily computed from RGB;
it gives a perceptually more accurate representation of color
relationships, superior to RGB. HSL [8] describes colors by
their hue (coded by an angle on the color wheel, from 0 to
360), saturation (ranging from 0 to 1) and lightness (again
from 0 to 1); this color space is often represented as a double-
cone. This double-cone can be expressed in Cartesian coordi-
nates (XYZ), computed from HSL values by setting

X = L

Y = S cos (2πH/360) min{2L, 2(1− L)} (1)
Z = S sin (2πH/360) min{2L, 2(1− L)}

2.2. Wavelet Transforms

Wavelet transforms allow us to analyze images at different
resolutions. By their finite support, wavelets are able to cap-
ture information specific to a particular location. Multiresolu-
tion analysis then provides information specific to both loca-
tion and resolution or scale. The clustering and persistence
properties of wavelet transforms provide us with statistical
models to characterize the dependencies between wavelet co-
efficients [9]; see also Section 2.3.
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Algorithm 1 Feature Extraction
Input: A set of painting images Mi, i ∈ {1, 2, 3, 4, 5}.
Initialize: Divide images into 64× 64 patches with 32 pixels
overlap, both vertically and horizontally. We term each patch
{Pi,j}5,ni

i,j=1, where ni is the number of patches in image Mi.

1: for each patch Pi,j do
2: Convert Pi,j into XYZ domain; normalize each domain.
3: Calculate complex wavelet coefficients wxi,j , w

y
i,j , w

z
i,j

and norms wi,j =
√
|wxi,j |2 + |wyi,j |2 + |wzi,j |2.

4: Compute HMT parameters θi,j = {εTi,j , σSi,j , σLi,j}.
5: end for

Output: A set of feature vectors Θ =
{
θi,j
}5,ni

i,j=1
.

In the dual-tree complex wavelet transform (CWT) [6],
two separate discrete wavelet transforms (DWT) decompose
signals into real and imaginary parts. The magnitude of each
complex wavelet coefficient is nearly shift invariant, render-
ing CWT insensitive to small image shifts. The dual-tree
CWT has six subbands and provides greater orientation se-
lectivity than DWT. It represents local differences in terms of
six basic directions, making it possible to capture brushstroke
information specific to location, scale and orientation.

2.3. Hidden Markov Trees

The clustering and persistence properties of wavelet coeffi-
cients suggest the use of an HMT model to capture the intrin-
sic statistical structure of wavelet coefficients of an image;
this provides an efficient dimensionality reduction technique
that is robust to noise induced by the scanning process [7].

At each level, the wavelet coefficients are modeled as a
mixture of two Gaussian distributions: one, with large vari-
ance, corresponds to the wavelet component with high en-
ergy; the other, with small variance, corresponds to smooth
components. Each HMT model thus has three parameters:

• εT , state transition probability between successive
scales

• σS , variance of the narrow Gaussian distribution
• σL, variance of the wide Gaussian distribution

We divide paintings into patches of size 64× 64; features
are extracted independently for each. HMT parameters are es-
timated by iterative Expectation Maximization (EM) method
(see details in [9]). The feature vector of each patch has
6× (2× 6 + 2× 4) = 120 entries: 2 variances for each of 6
scales in each of 6 subbands, and 2 (non-redundant) transition
probabilities for each of 4 finest scales. (See Algorithm 1.)

3. TOPIC MODELING BASED STYLE ANALYSIS

The “signature features” making up the feature vectors can be
viewed as primitive building blocks of the style of an artist;

Algorithm 2 Keyword Labeling

Input: All feature vectors Θ =
{
θi,j
}5,ni

i,j=1
.

Initialize: Set T = 1, ∀i, j, c1i,j = 1.
Repeat until T = 11:

1: for k = 1 : 2T−1 do
2: AkT =

⋃5,ni

i,j=1 θi,j |cTi,j=k.

3: Divide AkT into 2 subsets A2k−1
T+1 and A2k

T+1 using
K-means algorithm, i.e., AkT = A2k−1

T+1

⋃
A2k
T+1 and

A2k−1
T+1

⋂
A2k
T+1 = ∅.

4: Label Update: If θi,j |cTi,j=k ∈ A
2k−1
T+1 , cT+1

i,j = 2k− 1. If
θi,j |cTi,j=k ∈ A

2k
T+1, then cT+1

i,j = 2k.
5: end for

Set T = T + 1.
Output: A set of labels

{
c11i,j
}5,ni

i,j=1
∈ {1, 2, . . . , 1024}.

depending on the style of each artist, these signatures appear
with different proportions [3, 5]. Usage patterns representing
these proportions can be learned from the data. In a depar-
ture from previous work, we propose to learn these usage pat-
terns, using Latent Dirichlet Allocation (LDA), a probabilistic
model for discrete bag of words data. The choice of stylistic
elements in the creation of a painting is here viewed as simi-
lar to the choice of words in the process of creating a literary
text. Learned topics, or stylistic patterns, are weights over
the stylistic words; each painting is represented by weighted
combinations of these patterns. This approach is similar to
the bag of words model for object recognition in [10] which
represents images with different proportions of object recog-
nition feature patterns.

Since there are only five paintings, we divide each panel
into sub-images with no overlap (these sub-images are larger
than the small patches we used for feature extraction in Sec-
tion 2). We consider each sub-image as an independent repre-
sentation of the style of that panel’s artist. We begin with def-
initions and show the mathematical formulation afterwards.

• The basic unit of a sub-image is a single patch ω, char-
acterized by keywords indexed by {1, 2, . . . , T}. (We
will explain below how to generate these keywords.) A
patch associated to the uth keyword (u = 1, 2, . . . , T )
is represented by a T−dimensional vector with all but
the uth entry zero, and ωu = 1. Two patches with the
same keyword have the same drawing style.
• A sub-image is composed of a sequence of N patches

(equivalent to one article in the LDA model in [11]).
• An album is a collection of sub-images, corresponding

to a “corpus” in [11].

To generate the keywords, proceed as follows: cluster all
patches with a divisive hierarchical clustering method, consti-
tuting a fixed vocabulary of 210 = 1024 keywords in which
patch Pi,j is assigned a label c11i,j ∈ {1, 2, . . . , 1024}. This
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Fig. 1. Graphical model for the generative “painting pro-
cess”. Only one node is observed (shaded): the patches in
sub-images. Boxes denote repeated processes. The different
plates: N is the collection of patches, K is the stylistic pat-
terns, SI is the collection of sub-images.

is a form of vector quantization; it represents each sub-image
as a bag of words, see Algorithm 2. The binary structure of
the labeling procedure ensures that labels that share domi-
nant digit in their binary expansions are similar. “Stylistic
patterns” correspond to distribution over “keywords”; our ap-
proach assumes that two sub-images having a similar distri-
bution over keywords are similar in style.

The Dirichlet priors that control each sub-image/pattern
distribution and pattern/keyword distribution have parameters
α and β. These parameters are sampled once when generat-
ing a collection of images. If there is a collection of K stylis-
tic patterns, then the K-dimensional Dirichlet random vari-
able π, describing the pattern proportion for one sub-image,
is sampled once per sub-image. The probability density func-
tion of π is given by

p(π|α) =
Γ(
∑K
i=1 αi)∏K

i=1 Γ(αi)
πα1−1
1 . . . παK−1

K (2)

To generate a patch in a sub-image, the “artistic process”
first chooses a stylistic pattern tn based on π; this is a K-
dimensional unit vector with tjn = 1 if the jth pattern is
selected. The pattern-keyword distribution φ is a matrix of
size T × K, with column j representing the keyword dis-
tribution in pattern j. Then the process produces a patch
ωn ∼ p(ωn|tn, φj); note that φl,j = p(ωln = 1|tjn = 1).
Given α and β, the joint distribution of this generative model
can be written as

p(π, t, ω, φ|α, β) =

p(π|α)

K∏
j=1

p(φj |β)

N∏
n=1

p(tn|π)p(ωn|tn, φj)
(3)

A graphical description and dependencies of the genera-
tive model is shown in Figure 1. The only observed variable
is the patch, the hidden variables are sub-image/pattern distri-
butions, patterns and pattern assignments. One needs to infer
the hidden variables based on the observed variables, i.e., our
goal is to compute π and φ from ω. In [11], Blei et al. pro-
posed an efficient variational EM algorithm for inference and
parameter estimation; we use the Latent Dirichlet Allocation
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Fig. 2. Keyword distribution of some stylistic patterns. Left:
patterns 6, 8, 9. Middle: patterns 10, 12, 15. Right: patterns
16, 18, 20.
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Fig. 3. Stylistic pattern distributions in the five panels. For
each painting, the x-axis denotes the pattern label; the y-axis
corresponds to the total weight of each pattern in the painting.

package [12] for variational Bayesian (VB) implementation
of LDA.

4. RESULTS AND DISCUSSION

We divide the scans of the 5 panels into 221 non-overlapping
sub-images, each of size 480 × 480 pixels. In the feature ex-
traction step we divide each sub-image into 64 × 64 small
patches with 32 pixels overlap, so there are ((480−64)/32 +
1)2 = 196 patches in one sub-image. Each patch is associ-
ated with one keyword label; we observe the statistical key-
word distribution in each sub-image. The number of stylistic
patterns, K, is set to be 20.

We obtain two main parameters from LDA inference: the
distribution function over the keywords for each pattern, and
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Fig. 4. (a) Illustration of the relative importance of patterns 6 and 8 in sub-images in the 5 panels. (b) Same for patterns 16, 18,
19 and 20. (c) Similarity of sub-images visualized via t-SNE; sub-images from the same painting are dots of the same color.

the weights over patterns in each sub-image. The keyword
distributions for some patterns are in Figure 2; each pattern
is a sparse combination of the keywords in the vocabulary.
Some patterns are highly weighted over keywords with labels
with the same dominant binary digits (for example, patterns
16 and 18 are both concentrated on keywords indexed from
128 to 255); these patterns are thus similar (see Section 3) .

The pattern distribution for each of the five panels is ob-
tained by adding the pattern weights of all its sub-images and
normalizing the weights. Figure 3 shows, e.g., that patterns
6 and 8 are more heavily represented in panel 5 than in the
other four. Figure 4(a) visualizes this in terms of the original
panels: each sub-image in each panel is shown with a bright-
ness proportional to the sum of the weights of patterns 6 and
8 in that sub-image. Figure 4(b) does the same for patterns
16, 18, 19 and 20, which are clearly more heavily represented
in panel 2.

Figure 4(c) illustrates the differences between the pan-
els differently. Each sub-image is characterized by a 20-
dimensional pattern distribution vector π. We use the t-SNE
algorithm of [13] to visualize all sub-images by projecting the
pattern distribution matrix onto an optimal two-dimensional
plane. Most of the blue dots (sub-images of panel 5) are
located in one ellipse and a large percentage of the pink dots
(panel 2) in another, disjoint ellipse; the sub-images in other
three paintings are widely distributed in the plane. Once
again panels 2 and 5 (the Virgin Mary and St. Francis) stand
out.

5. CONCLUSIONS

In this paper, we motivated and introduced a successful appli-
cation of probabilistic topic modeling in painting analysis.

The results are preliminary but promising. This project
started when two of us (D. S. and W. B.) asked the other au-
thors whether the techniques of [2] could be used to quan-
tify stylistic differences art historians perceive among the five

panels of the Peruzzi Altarpiece. It is known that the pan-
els were painted on wood from one single plank, that they all
were prepared in the same way, that the underdrawings are
similar; a recent study by the Getty Institute also showed sim-
ilarities between pigments in the red, pink, blue, brown hair,
and flesh paints. Yet the same study also found differences
making especially the panel depicting St. Francis (panel 5
in our numbering) stand out. It is intriguing that this paint-
ing likewise stood out most in our analysis, as being “stylis-
tically” more different. On the other hand, the Getty study
found more reason to single out the panel of John the Baptist
(panel 4) than the Virgin Mary (panel 2).

Future work includes increasing the adaptivity of our
model in the area of painting analysis, restricting it to subsets
of the panels (only faces, or hands, or draped fabric, or hair).
We intend to check, in particular, to what extent specific el-
ements can be separated by our methods; concentrating on
hair, for instance, the thin parallel brush work in the mus-
tache/beard in Christ (panel 3) and John the Baptist (panel
4) seems, to the art historian’s eye, possibly from a different
hand than other parts of the altarpiece, and it would be in-
teresting to see whether this is mirrored by a more adapted
image analysis of the type described in this paper. Detailed
images of the same five panels with other imaging modali-
ties, such as X-ray radiography and infrared reflectography,
are also available; we would like to fold the results of all
these techniques together in a more ambitious, multispectral
analysis. Finally, there have been several very interesting
articles in the art history literature which attempt to estab-
lish similarities and differences in techniques between those
paintings thought to be by Giotto and others in the workshop
or followers; in this framework, it would be useful to extend
our work to this larger body of paintings.
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