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ABSTRACT
This paper addresses the problem of learning a collection of nonlin-
ear manifolds. Inspired by kernel methods, it puts forth a generaliza-
tion of the kernel subspace model, termed the Metric-Constrained
Kernel Union-of-Subspaces (MC-KUoS) model. It then develops
an iterative method for learning of an MC-KUoS whose solution
is based on the data representation capability of the manifolds and
distances between subspaces in the kernel (feature) space. The
proposed method (when using Gaussian and polynomial kernels)
outperforms existing competitive state-of-the-art methods for real-
world image denoising, which shows the benefits of the MC-KUoS
model and the proposed denoising approach.

Index Terms— Data-driven learning, image denoising, kernel
trick, manifold learning, union of subspaces.

1. INTRODUCTION

Many information processing methods are based on the maxim that
high-dimensional data often lie on or near some low-dimensional
geometric structures. Recovery of such low-dimensional geometric
structures embedded in a high-dimensional ambient space and trans-
forming data into low-dimensional representations not only help us
exhibit relevant information within them, but also facilitate process-
ing and computations significantly. Various techniques have been
proposed in the literature to learn the geometry underlying data us-
ing different manifold models [1–8]. Some works in hybrid linear
modeling and clustering are aimed at approximating the data using
a collection of subspaces [1, 6]. On the other hand, works like [2–4]
attempt to preserve global/local geometric properties of the data in
their low-dimensional representations.

Kernel methods [9] have proven to be very useful in extracting
the nonlinear characteristics of data. The fundamental theme of ker-
nel methods is to map the data from a nonlinear manifoldM⊆ Rm
to a very high-dimensional feature spaceH via a nonlinear mapping
φ : M → H. For a given kernel function k : M×M → R, any
point y ∈ M is mapped to a feature vector φ(y) in a Reproducing
Kernel Hilbert Space (RKHS) H such that for all y, y′ ∈ M, we
have k(y, y′) = 〈φ(y), φ(y′)〉. The problem of learning the mani-
foldM can be ultimately formulated in terms of the kernel matrix.
Some useful kernels include Gaussian kernel and polynomial kernel.
Interestingly, many nonlinear manifold models [2–4] can be viewed
as the kernel subspace model, which states that the nonlinear map-
ping of data toH lie near a low-dimensional subspace. We refer the
reader to [10] for a discussion of the connection between manifold
learning algorithms and the kernel PCA [9].

Our Contributions: Kernel subspace model has been shown to
be successful in many applications [11, 12]. But the use of a single

This work is supported in part by the Army Research Office under grant
W911NF-14-1-0295 and by an Army Research Lab Robotics CTA subaward.

subspace in the feature space can sometimes require a large dimen-
sion of the subspace to capture salient information of the entire data.
In order to address this problem, we put forth a natural generalization
of the kernel subspace model, termed the metric-constrained kernel
union-of-subspaces (MC-KUoS) model. The MC-KUoS model as-
serts that there exists a nonlinear map φ : M → H such that the
φ-mapped “images” of signals describing similar phenomena (i) be-
long to a union of low-dimensional subspaces in the feature space
H, and (ii) the individual subspaces are also close to each other with
respect to a metric defined on the Grassmann manifold in H. The
MC-KUoS model can also be regarded as an extension of our re-
cently proposed metric-constrained union-of-subspaces (MC-UoS)
model [13] for highly nonlinear data (e.g., handwritten digits). In
this paper, we propose an iterative algorithm for learning of an MC-
KUoS using the kernel trick [14]. In order to demonstrate the validity
of MC-KUoS model and the effectiveness of our learning algorithm,
we carry out numerical experiments involving Gaussian and poly-
nomial kernels for the denoising task. Results of these experiments
show that our approach outperforms other kernel subspace methods.

Notation: Throughout the paper, we use lower-case and upper-
case letters for vectors and matrices, respectively. The i-th element
of a vector v is denoted by v(i) and the (i, j)-th element of a matrix
A is denoted by ai,j . The m × m identity matrix is denoted by
Im. Given a set Ω, [A]Ω,: (resp., [v]Ω) denotes the submatrix of A
(resp., subvector of v) corresponding to the rows of A (resp., entries
of v) indexed by Ω. Given two sets Ω1 and Ω2, [A]Ω1,Ω2 denotes
the submatrix of A corresponding to rows and columns indexed by
Ω1 and Ω2, respectively. Finally, (·)T and tr(·) denote transpose
and trace operations, respectively, while ‖ · ‖F and ‖ · ‖p denote
Frobenius norm and `p norm of matrices and vectors, respectively.

2. PROBLEM FORMULATION

In this section, we rigorously formulate the problem studied in this
paper. Let Y ⊆ Rm be an m-dimensional input space andH ⊆ Rm̃
denote the feature space. In practice, m̃ is usually much larger than
m. The nonlinear map φ : Y → H is implicitly induced by a
positive definite kernel function k : Y × Y → R that describes
the similarity between two points in the Hilbert space H. The basic
premise in this paper is that the data mapped toH lie near a union of
L subspaces in the feature space; that is, U ≡ φ(Y) =

⋃L
`=1 S` ⊂

H. We make a simplified assumption that all the subspaces have
the same dimension s, i.e., ∀`,dim(S`) = s. Then each subspace
S` corresponds to a point on the Grassmann manifold Gm̃,s, which
denotes the set of s-dimensional subspaces in Rm̃. This means the
data can be considered as lying in a union of s-dimensional nonlinear
manifolds in Rm, i.e., Y =

⋃L
`=1M`. Here, we assume L and

s are known a priori. Data-driven estimation of L and s will be
considered in future work. Now, if data in the input space describe
similar phenomena then we expect the individual subspaces S`’s in
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the feature space to be close to each other with respect to a metric du
defined on Gm̃,s inH. This heuristic leads to the following definition
of a metric-constrained kernel union-of-subspaces (MC-KUoS).

Definition 1. (Metric-Constrained Kernel Union-of-Subspaces.) A
union of manifoldsY =

⋃L
`=1M` is said to be a metric-constrained

kernel union-of-subspaces with respect to a metric du : Gm̃,s ×
Gm̃,s → [0,∞) under the mapping φ if max`,p: 6̀=p du(S`,Sp) ≤ ε
for some positive constant ε.

The MC-KUoS model can be considered a nonlinear general-
ization of the MC-UoS model proposed in [13]. In order to quantify
closeness between subspaces on Gm̃,s, we again use the metric de-
fined in [15]. Specifically, ifD`, Dp ∈ Rm̃×s are orthonormal bases
for S` and Sp, then

du(S`,Sp) =
√
s− tr(DT

pD`D
T
` Dp) = ‖Dp − PS`Dp‖F , (1)

where PS` denotes the projection operator PS` = D`D
T
` . In or-

der to learn an MC-KUoS, assume we are given a set of N signals
Y = {yi}Ni=1 ∈ Rm×N that correspond to samples drawn from
an MC-KUoS Y . The samples in Y can be transformed to a ma-
trix φ(Y ) = [φ(y1), . . . , φ(yN )] via the nonlinear mapping φ. We
make an assumption that all the φ(yi)’s are linearly independent, i.e.,
rank(φ(Y )) = N , which is valid since we usually have m̃ � N .
This implies the kernel matrix G = φ(Y )Tφ(Y ) ∈ RN×N , with
individual entries defined as gi,j = k(yi, yj), is positive definite.
As proposed in [13], we use Y to learn the MC-KUoS such that (i)
each φ(yi) can be well represented by one of the S`’s and (ii) all the
S`’s are close to each other. Toward this end, we pose the problem of
learning U =

⋃L
`=1 S` inH as the following optimization problem:

{S`} = arg min
{S`}⊂Gm̃,s

L∑
`,p=1
` 6=p

d2
u(S`,Sp)

+ λ

N∑
i=1

‖φ(yi)− PSliφ(yi)‖22, (2)

where li = arg min` ‖φ(yi)−PS`φ(yi)‖22 with PS`φ(yi) denoting
the projection of φ(yi) onto S`. In (2), the first term encourages
the learned subspaces to be close to each other, while the second
term ensures the learned subspaces will yield good approximations
of φ-mapped features of training samples. The tuning parameter
λ > 0 provides a compromise between the two terms. Our goal is to
develop an efficient algorithm for solving (2) using the kernel trick
[14], which avoids explicitly mapping Y to the feature space. Given
a noisy signal y, we will also discuss an approach to computing its
projection ŷ onto the learned MC-KUoS for signal denoising.

3. PROPOSED ALGORITHM

In this section, we present our approach for learning an MC-KUoS
from the training data Y . In analogy with kernel PCA [9], we first
calculate the kernel matrix G = φ(Y )Tφ(Y ). Then the centered
kernel matrix G̃, defined as g̃i,j = 〈φ̃(yi), φ̃(yj)〉 with φ̃(yi) =

φ(yi) − φ̄ and φ̄ = 1
N

∑N
i=1 φ(yi), can be obtained from G by

G̃ = G − HNG − GHN + HNGHN , where HN is an N × N
matrix with all elements 1

N
. Then for any y, y′ ∈ Rm, we have [16]

k̃(y, y′) = φ̃(y)T φ̃(y′)

= k(y, y′)− 1

N
1TNky −

1

N
1TNky′ +

1

N2
1TNG1N ,

where 1N = [1, 1, . . . , 1]T is an N -dimensional vector and ky =
[k(y, y1), . . . , k(y, yN )]T . Next, to simplify the expression in (2),
we define an L×N membership matrix W as

W
def
= [w`,i ∈ {0, 1} :

L∑
`=1

w`,i = 1, i = 1, 2, . . . , N ]. (3)

Here, w`,i = 1 if and only if φ̃(yi) is assigned to subspace S`.
Let D` ∈ Rm̃×s denote an orthonormal basis of S` and D =
[D1, . . . , DL], then for any i = 1, . . . , N , we have the following

‖φ(yi)− PS`φ(yi)‖22 = ‖φ̃(yi)− PS` φ̃(yi)‖22
= ‖φ̃(yi)‖22 − ‖DT

` φ̃(yi)‖22. (4)

Therefore, the optimization problem (2) can be written as (D,W ) =
arg minD,W F (D,W ) where

F (D,W ) =

L∑
`,p=1
6̀=p

‖D` − PSpD`‖
2
F

+ λ

N∑
i=1

L∑
`=1

w`,i(‖φ̃(yi)‖22 − ‖DT
` φ̃(yi)‖22). (5)

Let c` = {i ∈ {1, . . . , N} : w`,i = 1} denote the indices of
all φ̃(yi)’s that are assigned to subspace S` and define Y` =

[
yi :

i ∈ c`
]

to be the corresponding m × N` matrix with N` = |c`|.
The centered data which are assigned to S` are denoted by φ̃(Y`) =[
φ̃(yi) : i ∈ c`

]
. Note that since S` is spanned by the columns of

φ̃(Y`), we can write D` = φ̃(Y`)U`, where U` ∈ RN`×s is some
basis representation matrix to make D` orthonormal. We then have
UT` [G̃]c`,c`U` = Is, where [G̃]c`,c` = φ̃(Y`)

T φ̃(Y`) denotes the
centered kernel matrix for subspace S`. In the following, all the
computations involving D`’s for MC-KUoS learning can be carried
out by using c`’s, U`’s and the kernel trick, which greatly simplifies
the computation. Now for any i = 1, 2, . . . , N ,

‖φ̃(yi)‖22 − ‖DT
` φ̃(yi)‖22 = k̃(yi, yi)− ‖UT` φ̃(Y`)

T φ̃(yi)‖22 (6)

where k̃(yi, yi) = k(yi, yi) − 2
N
1TNkyi + 1

N2 1
T
NG1N . Let

ψ`(yi) = [k(yc`(1) , yi), k(yc`(2) , yi), . . . , k(yc`(N`) , yi)]
T de-

note an N`-dimensional vector with elements being inner prod-
ucts between φ(yi) and the columns of φ(Y`), where φ(Y`) =[
φ(yi) : i ∈ c`

]
. Then ψ̃`(yi)

def
= φ̃(Y`)

T φ̃(yi) = ψ`(yi) −
1
N
1N`1

T
Nkyi − 1

N
[G]c`,:1N + 1

N2 1N`1
T
NG1N . Hence (6) can be

written as ‖φ̃(yi)‖22 − ‖DT
` φ̃(yi)‖22 = k̃(yi, yi) − ‖UT` ψ̃`(yi)‖22.

Next, after some algebraic manipulations, we obtain the following

‖D` − PSpD`‖
2
F

= s− tr
[
(φ̃(Y`)U`)

T φ̃(Yp)Up(φ̃(Yp)Up)
T φ̃(Y`)U`

]
= s− tr

[
UT` [G̃]c`,cpUpU

T
p [G̃]cp,c`U`

]
, (7)

where [G̃]c`,cp = φ̃(Y`)
T φ̃(Yp) denotes the centered inter-subspace

kernel matrix between S` and Sp.
Instead of optimizing (5) simultaneously over (D,W ), which

will be computationally cumbersome, we will resort to minimizing
F by alternating between minimizing F (D,W ) over W for a fixed
D (the kernel subspace assignment step) and minimizing F (D,W )
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Algorithm 1 Initialization for S`’s (KIOP)

Input: Centered kernel matrix G̃, parameters L and s.
Initialize: IN = {1, . . . , N}.

1: for ` = 1 to L do
2: c` ← randomly choose s elements in IN , IN ← IN \ c`.
3: Eigen decomposition of [G̃]c`,c` = V`Σ`V

T
` .

4: U` ← V`Σ
− 1

2
` .

5: end for
Output: Initial {c`}L`=1 and {U` ∈ Rs×s}L`=1.

over D for a fixed W (the kernel subspace update step). We start
by initialization of the D`’s. Since a subspace basis can be rep-
resented in the form of D` = φ̃(Y`)U` and we can compute U`
explicitly by using [G̃]c`,c` , this step can be treated as the initializa-
tion of c`. Note that any s linearly independent vectors describe an
s-dimensional subspace. In this regard, to initialize c`, or equiva-
lently, Y`, we only need to choose s signals in the training set such
that the φ-mapped “images” of these training samples are linearly
independent. Based on the assumption that all φ(yi)’s are linearly
independent, the initialization of c` can be done by randomly pick-
ing s indexes from {1, . . . , N} without replacement. We propose
an initialization method in Algorithm 1, referred to as kernel initial-
orthogonalization procedure (KIOP). Note that since

⋂L
`=1 c` = ∅

and we compute U` by U` = V`Σ
− 1

2
` , it is trivial to verify DT

` D` =
Is in this setting.

We now move onto the kernel subspace assignment stage. When
D is fixed, kernel subspace assignment corresponds to solving ∀i =
1, . . . , N , wli,i = 1 if

li = arg min
`=1,...,L

k̃(yi, yi)− ‖UT` ψ̃`(yi)‖
2
2. (8)

Then for the subspace update stage, sinceW is fixed, all the c`’s and
Y`’s are fixed. By fixing those variables, we can write the reduced
problem of (5) as a function of U`’s as follows:

min
U1,...,UL

f(U1, . . . , UL) =

L∑
`,p=1
6̀=p

‖φ̃(Y`)U` − PSp(φ̃(Y`)U`)‖2F

+ λ

L∑
`=1

(
‖φ̃(Y`)‖2F − ‖UT` φ̃(Y`)

T φ̃(Y`)‖2F
)

s.t. UT` [G̃]c`,c`U` = Is, ` = 1, 2, . . . , L. (9)

Instead of updating all the U`’s simultaneously, which is again
a difficult problem, we use block coordinate descent method [17] to
minimize f and update U`’s sequentially. Before that, we first need
to initialize all the U`’s such that U` ∈ RN`×s and UT` [G̃]c`,c`U` =

Is. To do so, we again apply eigen decomposition of [G̃]c`,c` =
V`Σ`V

T
` and define Is = {1, . . . , s}, which then results in U` =

[V`]:,Is [Σ`]
− 1

2
Is,Is . After the bases initialization step, we update U`

sequentially and each subproblem of (9) reduces to

U` = arg min
QT [G̃]c`,c`Q=Is

∑
p 6=`

‖φ̃(Y`)Q− PSp(φ̃(Y`)Q)‖2F

+
λ

2
(‖φ̃(Y`)‖2F − ‖QT φ̃(Y`)

T φ̃(Y`)‖2F )

= arg max
QT [G̃]c`,c`Q=Is

tr(QTA`Q),

Algorithm 2 Metric-Constrained Kernel UoS Learning
Input: Training data Y , parameters L, s and λ, kernel function k.

1: Compute kernel matrix G such that gi,j = k(yi, yj).
2: G̃← G−HNG−GHN +HNGHN .
3: Initialize {U`}L`=1 and {c`}L`=1 by KIOP (Algorithm 1).
4: while stopping rule do
5: for i = 1 to N (Kernel Subspace Assignment) do
6: li ← arg min`=1,...,L k̃(yi, yi)− ‖UT` ψ̃`(yi)‖22.
7: wli,i ← 1, and ∀` 6= li, w`,i ← 0.
8: end for
9: for ` = 1 to L (Kernel Bases Initialization) do

10: c` ← {1 ≤ i ≤ N : w`,i = 1}, N` ← |c`|.
11: Eigen decomposition of [G̃]c`,c` = V`Σ`V

T
` , with the di-

agonal elements of Σ` in nonincreasing order.

12: U` ← [V`]:,Is [Σ`]
− 1

2
Is,Is .

13: end for
14: while stopping rule do
15: for ` = 1 to L (Kernel Subspace Update) do
16: A` ←

∑
p6=` [G̃]c`,cpUpU

T
p [G̃]cp,c` + λ

2
[G̃]2c`,c` .

17: U` ← eigenvectors corresponding to the largest s eigen-
values for the generalized problem A`b = α[G̃]c`,c`b

such that UT` [G̃]c`,c`U` = Is.
18: end for
19: end while
20: end while
Output: {N` ∈ N}L`=1, {c`}L`=1 and {U` ∈ RN`×s}L`=1.

whereA` =
∑
p 6=` [G̃]c`,cpUpU

T
p [G̃]cp,c`+ λ

2
[G̃]2c`,c` is a symmet-

ric matrix of dimension N` × N`. Since [G̃]c`,c` is a positive def-
inite matrix, it follows from [18] that the trace of UT` A`U` is max-
imized when U` is a set of eigenvectors associated with the largest
s eigenvalues for the generalized problem A`b = α[G̃]c`,c`b with
UT` [G̃]c`,c`U` = Is. The whole algorithm can be detailed in Algo-
rithm 2, termed as Metric-Constrained Kernel Union-of-Subspaces
Learning (MC-KUSaL).

4. PRE-IMAGE RECONSTRUCTION

So far, we have only discussed an algorithm for learning an MC-
KUoS using the kernel trick. Now suppose we have a noisy test
sample y = x+noise ∈ Rm where φ̃(x) is assumed to belong to one
of the subspaces Sτ in U with φ̃(x) = φ(x)− φ̄. In order to denoise
this test sample and interpret/visualize the denoised signal, we need
to find a pre-image of y, denoted by ŷ ∈ Rm, such that φ(ŷ) =
PSτφ(y) for some τ ∈ {1, . . . , L}. First of all, the solution for τ is
trivial since τ = arg min` ‖φ(y) − PS`φ(y)‖22, which can be done
by the subspace assignment described in (8). Then PSτφ(y) is given
by PSτφ(y) = DτD

T
τ φ̃(y)+φ̄with φ̃(y) = φ(y)−φ̄. However, as

noted in [11], the pre-image does not always exist and the authors in
[11] reformulated this problem by minimizing the squared distance
between the feature point φ(ŷ) and PSτφ(y), i.e.,

min
ŷ∈Rm

‖φ(ŷ)− PSτφ(y)‖22 = ‖φ(ŷ)‖22 − 2(PSτφ(y))Tφ(ŷ) + Υ

where Υ includes terms independent of ŷ. We carry out this pre-
image computation by leveraging the idea in [16,19] and only using
the feature-space distances to find an appropriate pre-image. To this
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end, we first introduce the notion of the squared feature distance be-
tween PSτφ(y) and any φ(yi) under the MC-KUoS model, defined
as follows [16]

d2
H(φ(yi), PSτφ(y))

= ‖PSτφ(y)‖22 + ‖φ(yi)‖22 − 2(PSτφ(y))Tφ(yi), (10)

where ‖PSτφ(y)‖22 and (PSτφ(y))Tφ(yi) can be calculated in
terms of kernel representation by ‖PSτφ(y)‖22 = ψ̃τ (y)TUτU

T
τ(

ψ̃τ (y) + 2
N

[G]cτ ,:1N − 2
N2 1Nτ1

T
NG1N

)
+ 1

N2 1
T
NG1N and

(PSτφ(y))Tφ(yi) = ψ̃τ (y)TUτU
T
τ

(
ψτ (yi) − 1

N
1Nτ1

T
Nkyi

)
+

1
N
1TNkyi . Therefore, (10) becomes

d2
H(φ(yi), PSτφ(y))

= ψ̃τ (y)TUτU
T
τ

(
ψ̃τ (y)− 2

N
1Nτ1

T
N (

1

N
G1N − kyi)− 2ψτ (yi)

+
2

N
[G]cτ ,:1N

)
+ gi,i +

1

N2
1TNG1N −

2

N
1TNkyi (11)

with gi,i = k(yi, yi).
Let us now first consider the solution of ŷ for the Gaussian kernel

k(y, y′) = exp(−‖y−y′‖22/c) with c > 0. In this case the problem
is equivalent to maximizing ρ(ŷ) = (PSτφ(y))Tφ(ŷ) [11]. To do
so, we express ρ(ŷ) by

ρ(ŷ) = (DτD
T
τ φ̃(y) + φ̄)Tφ(ŷ)

= ψ̃τ (y)TUτU
T
τ (ψτ (ŷ)− 1

N
1Nτ1

T
Nkŷ) +

1

N
1TNkŷ.

Next, we define γ = 1
N

(1 − ψ̃τ (y)TUτU
T
τ 1Nτ )1N ∈ RN and

let γ̂ be an N -dimensional vector such that [γ̂]cτ = [γ]cτ +

UτU
T
τ ψ̃τ (y) and [γ̂]IN\cτ = [γ]IN\cτ , then ρ(ŷ) = γ̂Tkŷ =∑N

i=1 γ̂(i)k(ŷ, yi). The extremum can be obtained by setting
∇ŷρ(ŷ) = 0 and it follows that

ŷ =

∑N
i=1 γ̂(i) exp(−‖ŷ − yi‖22/c)yi∑N
i=1 γ̂(i) exp(−‖ŷ − yi‖22/c)

. (12)

By using the approximation PSτφ(y) ≈ φ(ŷ) and the relation ‖ŷ −
yi‖22 = −c log( 1

2
(2−d2

H(φ(ŷ), φ(yi)))) [16], we can finally recon-
struct the pre-image as follows:

ŷ =

∑N
i=1 γ̂(i)

(
1
2

(
2− d2

H(PSτφ(y), φ(yi))
))
yi∑N

i=1 γ̂(i)
(

1
2

(
2− d2

H(PSτφ(y), φ(yi))
)) . (13)

Next, for the polynomial kernel k(y, y′) = (〈y, y′〉 + c)d with
c ≥ 0 and an odd degree d, we can follow a similar procedure and
have the following expression to provide an approximate solution for
the problem of pre-image computation:

ŷ =

N∑
i=1

γ̂(i)
( (PSτφ(y))Tφ(yi)

‖PSτφ(y)‖22

) d−1
d
yi. (14)

5. NUMERICAL RESULTS

In this section, we present some preliminary denoising results on
the USPS dataset, which consists of a collection of m = 256-
dimensional handwritten digits. In our experiments, we learn a
union of L subspaces in the kernel space from the noiseless training
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Fig. 1. Denoising result on USPS dataset for (a) k(y, y′) =
exp(−‖y−y′‖22/4) and (b) k(y, y′) = (〈y, y′〉+2)3. Note that the
KPCA-Oracle algorithm is the ideal setting of the kernel PCA.

data, followed by denoising of noisy test samples using learned
subspaces. We assume that every noisy test sample yte = xte + ξ
where φ(xte) belongs to one of the S`’s in H (with ‖xte‖22 = 1)
and ξ is of N (0, (σ2

te/m)Im) distribution. We add white Gaussian
noise with different expected noise power (E[‖ξ‖22] = σ2

te) ranging
from 0.2 to 0.5 to the noiseless test set. We use Xte and Y te to
denote the set of “clean” and noisy test signals respectively. The
results of our proposed approach are compared with three other
methods: (i) kernel k-means clustering followed by kernel PCA on
each cluster (kernel k-means) [14], (ii) kernel PCA [9] with the
same number of eigenvectors as in MC-KUSaL (KPCA-FIX) and
(iii) kernel PCA with the number of eigenvectors chosen in an oracle
fashion by s = arg mins ||PSφ(yte) − φ(xte)||22 (KPCA-Oracle),
where xte and yte are clean and noisy test samples, respectively.
The relative reconstruction error of xtei ∈ Xte is then calculated
by ‖xtei − ŷtei ‖22/‖xtei ‖22, where ŷtei denotes the pre-image of ytei .
We use λ = 1 for all experiments and report the mean of relative
reconstruction errors of Xte.

We first experiment with a Gaussian kernel with parameters c =
4, L = 2 and s = 70. In this experiment, we select the first
200 samples from digits “0” and “8” in the dataset (400 images
in total). All these 400 samples are then vectorized and normal-
ized to unit `2 norms. Within these samples, we randomly choose
150 samples (without replacement) from each class for training and
the remaining 50 samples for testing, forming Y ∈ R256×300 and
Xte ∈ R256×100. Fig. 1(a) shows the relative error of test data for
different methods. It can be inferred from this figure that our method
produces better results than other methods for almost all σte’s (the
only exception is when σ2

te = 0.2, in which case MC-KUSaL’s re-
sults are comparable to those of KPCA-Oracle).

Finally, we choose the last 200 samples of digits “0” and “1” in
the polynomial kernel experiments and generate data with the same
procedure as in the previous experiments. The parameters are c = 2,
d = 3, L = 2 and s = 40. The relative error of test data are
shown in Fig. 1(b) and we can see the proposed method again yields
better denoising performance than all the other approaches when the
signal-to-noise ratio (SNR) of test data is relatively low.

6. CONCLUSION AND FUTURE WORK

In this paper, we introduced a framework for learning of a collection
of nonlinear manifolds based on the MC-KUoS model. Experimen-
tal results validate the effectiveness of both the MC-KUoS model
and our iterative method for learning an MC-KUoS in the applica-
tion of denoising task. One of the interesting avenues of future work
is the detection of the number and dimensions of the subspaces in
the kernel space from the training data.
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