
Distributed Learning of Human Mobility Patterns
From Cellular Network Data

Tong Wu∗, Raif M. Rustamov† and Colin Goodall†
∗Department of Electrical and Computer Engineering, Rutgers University, Piscataway, NJ, USA

Email: tong.wu.ee@rutgers.edu
†AT&T Labs - Research, Bedminster, NJ, USA
Email: {rustamov, cgoodall}@research.att.com

Abstract—The advent of ubiquitous mobile devices has pro-
vided us with an abundant spatio-temporal data source that
helps us understand human mobility. The big data generated
from mobile devices can be distributed at different locations
and it is always infeasible to aggregate the data from multiple
data collection centers into one location due to communication
and privacy considerations. This paper studies human mobility
patterns by learning data-adaptive representations for cellular
network data that are distributed across a set of interconnected
nodes. It proposes a distributed algorithm, termed cloud NN-
K-SVD, for collaboratively learning a sparsifying dictionary
(i.e., overcomplete basis) from the data without exchanging data
samples between different nodes. The effectiveness of cloud NN-
K-SVD is demonstrated through experiments on anonymized Call
Detail Records from Columbus, OH.

I. INTRODUCTION

Modeling and understanding human movement patterns is
of great importance in a number of fields including urban
planning, epidemiology, and telecommunications. In urban
planning, the design of transportation networks involves under-
standing of traffic volumes on commuting routes [1]. Likewise,
the geographic spread of infectious diseases is often dependent
on multiscale human mobility [2]. Furthermore, knowledge
of the behavior of populations allows companies and govern-
ments to optimize mobile networks.

Location information from wireless cellular networks offers
opportunities to the study of human mobility. The data used
for mobility modeling originate from anonymized Call Detail
Records (CDRs) recorded at the spatial resolution of the
deployed cell phone towers (or antennas). These mobile phone
location measurements are aggregated on internal servers
before any further analysis.1 In contrast to other location
sources such as GPS, these data are coarse both in space
and time [3], leading to impossibility of inferring complete
trajectories. The ever-growing ubiquity of cellular phones
is pushing network operators toward generation of massive
amounts of data. In addition, the data can be geographically
distributed across many data centers with limitations on the
transfer of raw data due to privacy concerns. It is therefore
important to develop efficient approaches for collaborative
learning of human mobility patterns in this “big, distributed
data” regime.

1No personally identifiable information (PII) was gathered or used in
conducting this study which was in compliance with AT&T’s privacy policy.

Sparse representation over redundant dictionaries has drawn
extensive attractions and has been shown to be highly effective
for many information processing tasks such as image denois-
ing [4], image classification [5], [6], and novel document
detection [7]. The basic premise is that natural signals can be
well approximated using sparse linear combinations of a few
vectors (also called atoms) in some overcomplete basis (or
so-called dictionary). Concretely, consider a signal y ∈ Rm,
we say y admits a sparse representation over a dictionary
D ∈ Rm×K consisting of K atoms, if we can approximate
y as y ≈ Dθ and the number of nonzero entries in θ ∈ RK

is small compared to K. Intuitively, dictionary learning for
sparse representation corresponds to learning a union of low-
dimensional subspaces underlying data of interest. While data-
adaptive dictionary learning dates back more than a decade
[8]–[11], many of these works have been focused on learning
a dictionary from the data available at a central location. In
recent years, the interest of developing efficient algorithms for
distributed dictionary learning has increased because of our
move toward an era of data explosion [12], [13].

In this paper, we propose a new distributed dictionary
learning algorithm, which we refer to as cloud NN-K-SVD, for
learning human mobility patterns from anonymized CDRs that
are distributed across a number of geographically distant data
centers/nodes. The proposed algorithm is a distributed variant
of the existing centralized NN-K-SVD algorithm [9] and each
node learns a dictionary through computations on its local data
and communications with its neighboring nodes. We impose
non-negativity on both the dictionary atoms and sparse coef-
ficients in our dictionary learning framework, which renders
the interpretability of the resulting dictionaries for mobility
patterns and facilitates their further analysis by human experts.
Cloud NN-K-SVD can also be regarded as an extension of the
cloud K-SVD algorithm [13], and both these works rely on the
classical power method for eigenanalysis [14] and consensus
averaging [15]. To the best of our knowledge, the work pre-
sented here is the first one that explores the use of dictionary
learning for characterizing human mobility patterns. In order
to demonstrate the validity of our proposed dictionary learning
method, we carry out numerical experiments on CDRs from
Columbus (OH) area. The results of these experiments show
the benefit of collaborative dictionary learning in comparison
to local dictionary learning.

978-1-5090-4780-2/17/$31.00 ©2017 IEEE

Notational Convention: We use non-bold letters to represent
scalars/sets, bold lower-case letters to denote vectors, and bold
upper-case letters to denote matrices. The i-th element of a
vector v is denoted by v(i) and the (i, j)-th element of a matrix
A is denoted by ai,j . The i-th column and j-th row of a matrix
A are denoted by ai and aj,T , respectively. We use 0 to denote
the zero vector of appropriate dimension. Given a set Ω, [A]:,Ω
(resp., [v]Ω) denotes the submatrix of A (resp., subvector of
v) corresponding to the columns of A (resp., entries of v)
indexed by Ω. Superscript (·)T denotes the transpose operation
and ‖ · ‖0 counts the number of nonzero entries in a vector.
Finally, ‖v‖2 denotes the `2 norm of a vector v and ‖A‖F
denotes the Frobenius norm of a matrix A.

II. PROBLEM FORMULATION

In this paper, we consider a network with P distributed
nodes according to an undirected graph G(Π, E), where Π =
{1, . . . , P} denotes the nodes and E describes links among
the nodes with (p, q) ∈ E if there exists a connection between
node p and q. Here, each node corresponds to a data center,
which can store hundreds of millions of anonymized CDRs,
perform computations independently and exchange informa-
tion with its immediate neighbors. We assume the graph G is
a connected graph.

In order to characterize the human mobility patterns in a
geographic region using cellular network data, we use the
locations of cell sites with which a phone is associated as
the approximated locations of the phone. We first convert the
geolocations (latitude, longitude) of the cell sites into slippy
tile indexes at a given zoom level h such that every cell
site in the region of interest is associated with one tile2. To
facilitate our analysis, we assume that for every anonymized
user, all the CDRs associated with this user are collected in
one node/data center of the network. We focus on analyzing
the patterns of daily travel. Specifically, for every anonymized
user whose CDRs are stored in a data center, we create an
m-dimensional binary feature vector y ∈ Rm to indicate the
incidence between the user and the slippy tiles in one day (i.e.,
the vector has ones in the entries where this user has “passed
through” the corresponding slippy tiles and zeros everywhere
else), where m is the number of slippy tiles in the region. This
feature vector describes the travel path of this user and will
be regarded as one data sample in the dictionary learning.

Next, consider a collection of m-dimensional training data
distributed across these P nodes, where the p-th node has
Np local data samples (which corresponds to Np anonymized
users), given by a matrix Yp = [yp,1,yp,2, . . . ,yp,Np

] ∈
Rm×Np . We can express all the data samples using a single
matrix Y = [Y1,Y2, . . . ,YP] ∈ Rm×N , where N =∑P

p=1Np denotes the total number of samples distributed
across these P nodes. The basic premise in this paper is
that all the distributed data samples lie near a union of s-
dimensional subspaces with s� m. To be specific, assuming
the distributed data Y are available at a fusion center, the

2https://wiki.openstreetmap.org/wiki/Slippy map tilenames

problem of learning a (centralized) dictionary can be expressed
as the following optimization problem [9]:

(D,Θ) = arg min
D,Θ≥0

‖Y −DΘ‖2F s.t. ∀i, ‖θi‖0 ≤ s. (1)

Here, D ∈ Rm×K is an overcomplete dictionary that consists
of K unit `2-norm columns (i.e., K > m) and Θ =
[θ1, . . . ,θN] ∈ RK×N is the sparse coefficient matrix. In
words, (1) aims to learn a dictionary D such that every path yi

can be decomposed into no more than s travel routes, where
each route corresponds to an atom in the dictionary D. For
maintaining the interpretability of path-route associations, we
require both D and Θ to be non-negative. This problem is
non-convex in (D,Θ) and a natural approach for solving it is
to alternate between solving (1) for D using a fixed Θ and
then solving (1) for Θ using a fixed D [9].

However, due to the extremely high storage and commu-
nication costs of big data and privacy concerns, it is always
prohibitive to gather the distributed data Y to a central loca-
tion. In this regard, we are interested in learning a collection
of dictionaries {Dp}p∈Π through local computations and com-
munications within the network such that the performance of
these collaborative dictionaries approximates the performance
of a dictionary D learned from Y in a centralized manner.
In the following section, we present a decentralized variant of
the dictionary learning method proposed in [9].

III. PROPOSED ALGORITHM

In this section, we first review the centralized NN-K-SVD
algorithm [9], which is followed by our proposed distributed
dictionary learning algorithm, termed cloud NN-K-SVD.

A. Review of Centralized NN-K-SVD Algorithm

The NN-K-SVD algorithm starts with a random dictionary
D, and solves (1) by iterating between sparse coding step and
dictionary update stage [9]. Specifically, when the dictionary
D is fixed, the sparse coding amounts to solving Θ as follows:

∀i, θi = arg min
θ∈RK ,θ≥0

‖yi −Dθ‖22 s.t. ‖θ‖0 ≤ s. (2)

This problem can be solved by either convexifying (2) [16]
or using greedy algorithms [17]. Afterward, given a fixed Θ,
the dictionary update step in NN-K-SVD involves sequentially
updating one atom dk, k = 1, . . . ,K, at a time, while keeping
all other atoms in the dictionary fixed. In order to update dk,
we first compute the error matrix Ek = Y −

∑
` 6=k d`θ`,T ,

and let ωk = {i : 1 ≤ i ≤ N, θk,T (i) 6= 0}. Then the problem
of updating dk can be expressed as the following positive
rank-one optimization problem:

(dk, [θk,T]Tωk
) = arg min

u,v≥0,‖u‖22=1

‖Êk − uvT ‖2F , (3)

where Êk = [Ek]:,ωk
is the reduced error matrix by keeping

the columns of Ek indexed by ωk only. In order to find starting
points for u and v, we apply singular value decomposition
(SVD) on Êk and then cancel out the negative entries. More
precisely, we initialize u and v by setting u = a and v = σb,

where a and b are the dominant left and right singular vectors
of Êk, respectively, while σ denotes the largest singular value
of Êk. In order to make both u and v positive, we set the
negative entries of u and v to be zeros by performing the
following operations: u = u� [u ≥ 0] and v = v � [v ≥ 0],
where � denotes the element-wise product between two vec-
tors. After this, we adopt an alternate minimization approach
[18], which involves iteratively updating u for a fixed v using
(4) and then updating v for a fixed u using (5) [9]:

u =
Êkv

vTv
, u = u� [u ≥ 0], (4)

v =
ÊT

k u

uTu
, v = v � [v ≥ 0]. (5)

This process is repeated until convergence is achieved. Finally,
we set dk = u

‖u‖2 and [θk,T]ωk
= ‖u‖2vT . After finishing the

update of all the K atoms in D, NN-K-SVD [9] then moves
to the sparse coding step and this two-stage iterative process
continues until a stopping criterion is satisfied.

B. Distributed Dictionary Learning Using Cloud NN-K-SVD

We now introduce our proposed distributed dictionary learn-
ing algorithm based on NN-K-SVD. Similar to the centralized
NN-K-SVD, our distributed algorithm starts with a common
random dictionary Dinit for all the nodes. In the sparse coding
stage, we propose that each node p computes the sparse
coefficients of its local data Yp using the local dictionary Dp

without collaborating with other nodes by solving

∀i, θp,i = arg min
θ∈RK ,θ≥0

‖yp,i −Dpθ‖22 s.t. ‖θ‖0 ≤ s, (6)

where yp,i and θp,i denote the i-th sample and its correspond-
ing coefficient vector at node p, respectively. In this paper, we
propose to use Nonnegative Matching Pursuit (NMP) [17] to
solve (6) because of its greedy nature.

The main challenge in our distributed dictionary learn-
ing problem lies in the update of the dictionary atoms. As
described in Section III-A, in order to update dk in the
centralized setting, we need to compute the dominant left and
right singular vectors of the reduced error matrix Êk. However,
in the distributed scenario, this error matrix is distributed
across the network and each node p has its own reduced error
matrix Êp,k computed from its local data. Mathematically
speaking, we can express the distributed error matrix as
Êk = [Ê1,k, Ê2,k, . . . , ÊP,k], where Êp,k = [Ep,k]:,ωp,k

with
Ep,k = Yp −

∑
` 6=k dp,`θp,`,T and ωp,k = {i : 1 ≤ i ≤

Np, θp,k,T (i) 6= 0}. Here, dp,k denotes the k-th atom of the
dictionary Dp and θp,k,T denotes the k-th row of the sparse
coefficient matrix Θp at node p. In order to estimate the
dominant left singular vector of Êk (again denoted by a) over
the network, we perform distributed power method described
in [13] by using the distributed error matrices Êp,k’s, and we
denote the collection of the estimates of a at different nodes
by {up}Pp=1. We omit the details here in the interest of space.
We again use σ and b to denote the largest singular value and
dominant right singular vector of Êk, respectively. Note that

Algorithm 1 Cloud NN-K-SVD for dictionary learning
Input: Distributed data Y1,Y2, . . . ,YP , parameters K and
s, and a doubly-stochastic matrix W.
Initialize: Generate a random dictionary Dinit ∈ Rm×K and
set Dp = Dinit, p = 1, . . . , P .

1: while stopping rule do
2: The p-th site locally solves (Sparse Coding)
∀i, θp,i = arg minθ≥0 ‖yp,i −Dpθ‖22 s.t. ‖θ‖0 ≤ s.

3: for k = 1 to K (Dictionary Update) do
4: ∀p, Ep,k = Yp−

∑
` 6=k dp,`θp,`,T , ωp,k = {i : 1 ≤ i ≤

Np, θp,k,T (i) 6= 0} and Êp,k = [Ep,k]:,ωp,k
.

5: Fp = Êp,kÊT
p,k.

6: Generate zinit randomly, set tb = 0 and ∀p, z
(0)
p = zinit.

7: while stopping rule (Distributed Power Method) do
8: tb = tb + 1, tc = 0 and ∀p, χ(0)

p = Fpz
(tb−1)
p .

9: while stopping rule (Consensus Averaging) do
10: tc = tc + 1, ∀p, χ(tc)

p =
∑

q∈Np
wp,qχ

(tc−1)
q .

11: end while
12: ∀p, z

(tb)
p = χ

(tc)
p /‖χ(tc)

p ‖2.
13: end while
14: ∀p, up = z

(tb)
p and vp = ÊT

p,kup.
15: ∀p, up = up � [up ≥ 0], vp = vp � [vp ≥ 0].
16: while stopping rule do
17: ∀p, cp = Êp,kvp and rp = vT

p vp.
18: tc = 0 and ∀p, φ(0)

p = cp and ψ(0)
p = rp.

19: while stopping rule (Consensus Averaging) do
20: tc = tc + 1, ∀p, φ(tc)

p =
∑

q∈Np
wp,qφ

(tc−1)
q and

ψ
(tc)
p =

∑
q∈Np

wp,qψ
(tc−1)
q .

21: end while
22: ∀p, up = φ(tc)

p /ψ
(tc)
p , up = up � [up ≥ 0].

23: ∀p, vp =
ÊT

p,kup

uT
p up

, vp = vp � [vp ≥ 0].
24: end while
25: ∀p, dp,k =

up

‖up‖2 and [θp,k,T]ωp,k
= ‖up‖2vT

p .
26: end for
27: end while
Output: A collection of dictionaries {Dp ∈ Rm×K}Pp=1.

ÊT
k a = [Ê1,k, Ê2,k, . . . , ÊP,k]Ta = σb and we can write the

variable v in (3) as vT = [vT
1 ,v

T
2 , . . . ,v

T
P] in the distributed

setting, where vp is the variable corresponding to the reduced
coefficient vector [θp,k,T]Tωp,k

. It then follows that once we
have up’s available at different nodes, we can initialize vp’s
by setting vp = ÊT

p,kup. In order to make the initial up’s and
vp’s positive, we again perform the following operations:

∀p, up = up � [up ≥ 0], vp = vp � [vp ≥ 0]. (7)

Once we have the initial vectors up’s and vp’s, we move
onto the stage where we iteratively update up’s and vp’s using
alternate minimization. Notice that in the distributed setting,

we can write the first equation in (4) as u =
∑P

p=1 Êp,kvp∑P
p=1 vT

p vp
. In

this manner, we first compute each cp = Êp,kvp and rp =
vT
p vp locally, and then make use of the consensus averaging

(a) (b) (c)

Fig. 1. Comparison between centralized K-SVD and NN-K-SVD for learning the human mobility patterns. (a) represents a test vector/path on May 7, 2016.
The associated atoms of this test vector for K-SVD and NN-K-SVD are shown in (b) and (c), respectively.

(a) (b)

(c)

Fig. 2. Comparison between centralized K-SVD and NN-K-SVD for learning the human mobility patterns. (a) represents a test vector/path on May 12, 2016.
The associated atoms of this test vector for K-SVD and NN-K-SVD are shown in (b) and (c), respectively.

method [15] to compute the summation of these individual
vectors/scalars over the network. To be specific, we first design
a doubly-stochastic matrix W according to the topology of the
network graph G [15]. Next, each node is initialized with a
vector φ(0)

p = cp (we also set ψ(0)
p = rp, since the computation

of
∑P

p=1 rp has the same principle, we focus on describing the
procedure of computing

∑P
p=1 cp here) and we define Φ(0) =

[φ
(0)
1 , . . . ,φ

(0)
P]T ∈ RP×m. We also let Np = {q : (p, q) ∈ E}

be the set of neighbors of node p. In each iteration, each node
updates its local vector through the communications with its
neighbors as follows: φ(tc)

p =
∑

q∈Np
wp,qφ

(tc−1)
q , where tc

denotes the iteration number. This iteration can be written in
vector form as Φ(tc) = WtcΦ(0) and it has been shown in [15]
that limtc→∞φ(tc)

p = (Φ(0))T1/P for all p’s, where 1 ∈ RP

is a vector of all ones. But in practice, we can only perform a
finite number of iterations for consensus averaging, which we
denote by Tc, and the averaging result gets better as Tc grows.
In our experiments, the consensus iterations Tc is set to be
10. After finishing consensus iterations for both cp’s and rp’s,
each node p then updates up by setting up = φ(Tc)

p /ψ
(Tc)
p

and up = up � [up ≥ 0]. Once we have the updated up’s
available at different nodes, we then simply update vp’s locally

as vp =
ÊT

p,kup

uT
p up

and vp = vp � [vp ≥ 0]. The update of
up’s and vp’s is repeated until a convergence criteria is met.
Finally, we set dp,k =

up

‖up‖2 and [θp,k,T]ωp,k
= ‖up‖2vT

p .
This concludes our discussion of the dictionary update step.
A complete description of the resulting algorithm, which we
term cloud NN-K-SVD, is given in Algorithm 1.

IV. EXPERIMENTAL RESULTS

In this section, we present the results of human mobility
characterization using centralized/distributed dictionary learn-
ing. We focus on analyzing the records of Columbus, OH and
we work with three days of data: May 7, 2016 (Saturday),
May 11, 2016 (Wednesday), and May 12, 2016 (Thursday).
These mobile phone location measurements are anonymized
and the locations are discretized to a grid of slippy tiles,
each corresponds to a 600m × 600m area. All the analysis
is conducted on internal AT&T servers. There are 175 slippy
tiles/grids in the region of interest. We exclude the users who
“passed through” less than 20 slippy tiles on weekdays and
9 slippy tiles on weekends since there is little to no mobility
of these users. This leaves us with roughly 16000 anonymous
users for analysis in each of these three days. Afterwards, we
create m = 175-dimensional binary feature vectors for all the
these users as described in Section II and these vectors are
used in the experiments. From all the retained samples, we
randomly select 12000 samples for training and the remaining
samples (roughly 4000 samples) are used for testing purposes.
This random selection is repeated five times. All the training
samples are normalized to have unit `2-norms.

We first examine the performance of learning the mobil-
ity patterns using centralized dictionary learning methods.
We perform centralized K-SVD/NN-K-SVD with parameters:
m = 175, N = 12000, K = 200, and the sparsity level s is
set to be 3 for the data on weekends and 4 for the data on
weekdays. Then for a test sample y, we apply Orthogonal
Matching Pursuit (OMP) [19] and NMP [17] to compute
its sparse representation coefficient vector θ in terms of the

TABLE I
RELATIVE REPRESENTATION ERRORS OF TEST DATA FOR DIFFERENT DICTIONARY LEARNING APPROACHES

centralized K-SVD local K-SVD cloud K-SVD centralized NN-K-SVD local NN-K-SVD cloud NN-K-SVD
May 7 0.240 0.301 0.283 0.237 0.274 0.238
May 11 0.252 0.325 0.277 0.246 0.279 0.246
May 12 0.252 0.326 0.278 0.247 0.280 0.247

(a) (b) (c)

(d) (e)

Fig. 3. Comparison between local NN-K-SVD and cloud NN-K-SVD for learning the human mobility patterns. (a) represents a test vector/path on May 7,
2016. The associated atoms of this test vector for local NN-K-SVD at node 4 and node 8 are shown in (b) and (c), respectively. The associated atoms of this
test vector for cloud NN-K-SVD at node 4 and node 8 are shown in (d) and (e), respectively.

learned dictionary by K-SVD and NN-K-SVD, respectively.
The relative representation error with respect to y can be
defined as e =

‖y−Dθ‖22
‖y‖22

, and we use the mean of relative
representation errors of test data to quantitatively evaluate the
performance of dictionary learning. As shown in Table I, the
relative error of test data using the learned dictionary by NN-
K-SVD is slightly less than the one computed using the learned
dictionary by K-SVD for all the three days. The visualization
of a test path on May 7 and its associated routes/atoms for
K-SVD/NN-K-SVD with s = 3 is represented in Fig. 1.
The blue dots in the figures correspond to the center location
of the slippy tiles, and the dots with red cross in Fig. 1(a)
correspond to the “active” slippy tiles of this test path and
the dots with red cross in each of the plots in Fig. 1(b)
and Fig. 1(c) correspond to the slippy tiles whose respective
entries in the associated atoms have absolute values greater
than 0.1. By comparing Fig. 1(b) with Fig. 1(c), we can see
the third associated atom for K-SVD has only few “active”
slippy tiles and has large overlap with the first associated one,
whereas the three associated atoms for NN-K-SVD do not
have much overlap. The main reason for the overlap between
the associated atoms is that K-SVD allows negative dictionary
atoms and sparse coefficients, and some learned atoms are only
used to reduce the representation error without interpretability.
We also show a test path on May 12 and its associated
routes/atoms with s = 4 in Fig. 2, from which we observe that
the third associated atom for K-SVD has large overlap with the
first associated one. These results confirm the superiority of
applying nonnegative dictionary learning methods for learning
the human mobility patterns.

Next, we study the performance of distributed dictionary
learning on human mobility data. For each set of training
and test data, we randomly generate a network with P = 10

different nodes using an Erdős-Rényi graph with probability
0.5, and each node has 1200 training samples. The generation
of the network is also repeated five times. We perform both
cloud NN-K-SVD and cloud K-SVD [13] for collaborative dic-
tionary learning, in contrast with localized dictionary learning
approaches, where each node learns a local dictionary from
its local data using K-SVD and NN-K-SVD (which we term
local K-SVD and local NN-K-SVD, respectively). For a test
sample y, we compute its relative representation error at node
p using the dictionary Dp as ep =

‖y−Dpθp‖22
‖y‖22

, where θp

is computed using OMP for cloud/local K-SVD and NMP
for cloud/local NN-K-SVD, respectively. Table I summarizes
the mean of the relative representation errors of the test data
for all the nodes, from which we provide the evidence that
cloud NN-K-SVD outperforms the local NN-K-SVD in terms
of smaller relative errors of the test data, and the performance
of cloud NN-K-SVD is very close to the one for centralized
NN-K-SVD. In order to further compare cloud NN-K-SVD
with local NN-K-SVD, we again show some test examples
and their associated atoms for cloud NN-K-SVD and local
NN-K-SVD at some nodes in Fig. 3 and Fig. 4. As can be
seen from Fig. 3, the first and the third associated atom for
local NN-K-SVD at node 4 (Fig. 3(b)) look similar to the
first and the second associated atom at node 8 (Fig. 3(c)),
respectively. However, the second associated atom for local
NN-K-SVD at node 4 is different from the third associated
atom at node 8. In contrast, it can be inferred from Fig. 3(d)
and Fig. 3(e) that the associated atoms for cloud NN-K-
SVD at node 4 and 8 are very similar and the consistency
is another main advantage of using collaborative dictionary
learning. We can also observe a similar phenomenon in Fig. 4.
Furthermore, some atoms learned by local NN-K-SVD do not
have continuous patterns (e.g., the second associated atom at

(a) (b)

(c)

(d)

(e)

Fig. 4. Comparison between local NN-K-SVD and cloud NN-K-SVD for learning the human mobility patterns. (a) represents a test vector/path on May 11,
2016. The associated atoms of this test vector for local NN-K-SVD at node 3 and node 6 are shown in (b) and (c), respectively. The associated atoms of this
test vector for cloud NN-K-SVD at node 3 and node 6 are shown in (d) and (e), respectively.

node 6 in Fig. 4(c)) and these atoms are difficult to interpret.
Therefore, our proposed method outperforms the local NN-K-
SVD in learning the human mobility patterns.

V. CONCLUSION

In this paper, we have proposed a new distributed dictionary
learning algorithm, termed cloud NN-K-SVD, for collabo-
ratively learning the dictionary from massive data that are
distributed across interconnected nodes in the network. The
efficacy of the proposed algorithm is demonstrated through
numerical experiments on anonymized Call Detail Records
with an application of human mobility characterization.

REFERENCES

[1] “The journey to work: Relation between employment and residence,”
American Society of Planning Officials, Tech. Rep. 26, 1951.

[2] D. Balcan, V. Colizza, B. Gonçalves, H. Hu, J. J. Ramasco, and
A. Vespignani, “Multiscale mobility networks and the spatial spreading
of infectious diseases,” in Proc. Natl. Acad. Sci., vol. 106, no. 51, 2009,
pp. 21 484–21 489.

[3] R. Becker, R. Cáceres, K. Hanson, S. Isaacman, J. M. Loh,
M. Martonosi, J. Rowland, S. Urbanek, A. Varshavsky, and C. Volinsky,
“Human mobility characterization from cellular network data,” Commun.
ACM, vol. 56, no. 1, pp. 74–82, 2013.

[4] M. Elad and M. Aharon, “Image denoising via sparse and redundant
representations over learned dictionaries,” IEEE Trans. Image Process.,
vol. 15, no. 12, pp. 3736–3745, 2006.

[5] J. Mairal, J. Ponce, G. Sapiro, A. Zisserman, and F. R. Bach, “Supervised
dictionary learning,” in Proc. Adv. Neural Inf. Process. Syst. (NIPS),
2008, pp. 1033–1040.

[6] J. Mairal, F. Bach, and J. Ponce, “Task-driven dictionary learning,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 34, no. 4, pp. 791–804, 2012.

[7] S. P. Kasiviswanathan, H. Wang, A. Banerjee, and P. Melville, “Online
`1-dictionary learning with application to novel document detection,” in
Proc. Adv. Neural Inf. Process. Syst. (NIPS), 2012, pp. 2258–2266.

[8] K. Engan, S. O. Aase, and J. H. Husøy, “Method of optimal directions
for frame design,” in Proc. IEEE Int. Conf. Acoustics, Speech, and Signal
Process. (ICASSP), vol. 5, 1999, pp. 2443–2446.

[9] M. Aharon, M. Elad, and A. M. Bruckstein, “K-SVD and its non-
negative variant for dictionary design,” in Proc. SPIE conference
wavelets, vol. 5914, 2005, pp. 327–339.

[10] M. Aharon, M. Elad, and A. Bruckstein, “K-SVD: An algorithm for
designing overcomplete dictionaries for sparse representation,” IEEE
Trans. Signal Process., vol. 54, no. 11, pp. 4311–4322, 2006.

[11] R. Rubinstein, M. Zibulevsky, and M. Elad, “Double sparsity: Learning
sparse dictionaries for sparse signal approximation,” IEEE Trans. Signal
Process., vol. 58, no. 3, pp. 1553–1564, 2010.

[12] J. Liang, M. Zhang, X. Zeng, and G. Yu, “Distributed dictionary
learning for sparse representation in sensor networks,” IEEE Trans.
Image Process., vol. 23, no. 6, pp. 2528–2541, 2014.

[13] H. Raja and W. U. Bajwa, “Cloud K-SVD: A collaborative dictionary
learning algorithm for big, distributed data,” IEEE Trans. Signal Pro-
cess., vol. 64, no. 1, pp. 173–188, 2016.

[14] G. H. Golub and C. F. Van Loan, Matrix computations. Johns Hopkins
University Press, 1996.

[15] L. Xiao and S. Boyd, “Fast linear iterations for distributed averaging,”
Systems and Control Letters, vol. 53, pp. 65–78, 2004.

[16] D. L. Donoho and J. Tanner, “Sparse nonnegative solution of underde-
termined linear equations by linear programming,” in Proc. Natl. Acad.
Sci., vol. 102, no. 27, 2005, pp. 9446–9451.

[17] R. Peharz, M. Stark, and F. Pernkopf, “Sparse nonnegative matrix
factorization using `0-constraints,” in Proc. IEEE Int. Workshop Mach.
Learn. Signal Process. (MLSP), 2010, pp. 83–88.

[18] D. P. Bertsekas, Nonlinear programming. Athena Scientific, 1999.
[19] J. A. Tropp and A. C. Gilbert, “Signal recovery from random mea-

surements via orthogonal matching pursuit,” IEEE Trans. Inf. Theory,
vol. 53, no. 12, pp. 4655–4666, 2007.

