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Abstract—In this paper, a new clustering algorithm for two-
dimensional data is proposed. Unlike most conventional cluster-
ing methods which are derived for dealing with matrices, the
proposed algorithm performs clustering in a third-order tensor
space. The images are then assumed to be drawn from a mixture
of low-dimensional free submodules. The proposed method inte-
grates spectral clustering into the optimization problem, thereby
overcomes the shortcomings of existing techniques by its ability
to perform optimal clustering of the submodules. An efficient
algorithm via a combination of an alternating direction method
of multipliers and spectral clustering is developed to find the
representation tensor and the segmentation simultaneously. The
effectiveness of the proposed method is demonstrated through
experiments on three image datasets.

Index Terms—Clustering, union of free submodules

I. INTRODUCTION

Clustering of two-dimensional data, e.g., images, has at-
tracted great interest in the past decade. One of the models that
has shown remarkable performance is the union of subspaces
(UoS) model, which assumes imaging data lie near a union
of low-dimensional subspaces. Therefore, the task, known
as subspace clustering, is to segment the data into their
respective subspaces. This problem has numerous applications
in computer vision and image processing [1]–[8].

In traditional subspace clustering literature, imaging data
are always first flattened into vectors, which are then fed into
a learning algorithm designed for vectorial data. Such ap-
proaches can result in poor performance because they neglect
the multidimensional structure of data. Recently, there have
been several algorithms proposed to improve the performance
of many tasks by exploiting the tensor representation of
imaging data [9]–[13]. In particular, motivated by t-product
[14], [15]—a novel algebraic approach based on circular
convolution, a third-order tensor can be regarded as a “matrix”
whose elements are tube fibers. Subsequently, one can arrange
images as lateral slices to make a third-order tensor and the
data tensor can be represented in a self-expressive manner
using t-product. The pairwise affinities between the images
can then be built from the representation coefficients, which
is pipelined into the spectral clustering [16] to obtain final
clustering results. In [10], a sparsity constraint is imposed on
the coefficient tensor, while [12] requires the coefficient tensor
to be both structured and low rank.

Our contributions: Although the approaches proposed in
[10], [12] have achieved promising results, a common short-
coming is that they divide the problem into two separate
stages: affinity learning and spectral clustering. The rela-
tionship between the coefficient tensor and the segmenta-
tion of data is not explicitly captured, which can lead to
sub-optimal results. In this paper, we propose a clustering-
aware structure-constrained low-rank submodule clustering
(CSLRSmC), which attempts to integrate the two separate
steps, i.e., representation tensor learning and spectral cluster-
ing, into a unified optimization framework. To be specific,
we add a segmentation dependent term into the optimization
problem, in which the representation tensor and the submodule
segmentation are learned jointly. Experimental results on real-
world image datasets show that our proposed method outper-
forms the state-of-the-art approaches.

Organization: The rest of this paper is organized as follows.
Section II gives the notations and preliminaries used through-
out this paper. We mathematically formulate the CSLRSmC
problem in Section III and present our algorithm in Section IV.
In Section V, we describe the results of numerical experiments
that validate the effectiveness of our proposed method. We
finally conclude in Section VI with some remarks.

II. TECHNICAL BACKGROUND

A. Notation and Definitions

We utilize calligraphy letters for tensors, for example,
A, bold lowercase letters for vectors, for example, a, bold
uppercase letters for matrices, for example, A, and non-bold
letters for scalars, for example, a. The vector of all ones and
the identity matrix are denoted by 1 and I of appropriate
dimensions, respectively. For a matrix A, its (i, j)-th element
is denoted by ai,j . The i-th row and j-th column of a matrix
A are denoted by ai and aj , respectively. The `1 norm of
A is denoted by ‖A‖1 =

∑
i,j |ai,j |. We use (·)T and tr(·)

to denote transpose and trace operations, respectively. For
a third-order tensor A, ai,j,k denotes its (i, j, k)-th element.
We use MATLAB notation to denote the elements in tensors.
Specifically, we use A(i, :, :), A(:, i, :) and A(:, :, i) to denote
the i-th horizontal, lateral and frontal slices, respectively; and
A(:, i, j), A(i, :, j) and A(i, j, :) to denote the (i, j)-th mode-
1, mode-2 and mode-3 fibers, respectively. In particular, A(i)

is also used to represent A(:, :, i). We use Â = fft(A, [ ], 3)
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to denote the Fourier Transform along the third dimension
of a tensor A. Similarly, one can compute A from Â via
ifft(Â, [ ], 3) using the inverse Fourier transform along mode-
3 of Â. The inner product of two tensors A,B ∈ Rn1×n2×n3

is defined as 〈A,B〉 =
∑
i,j,k ai,j,kbi,j,k. The Frobenius

and infinity norms of a tensor A ∈ Rn1×n2×n3 are defined
as ‖A‖F =

√∑
i,j,k a

2
i,j,k and ‖A‖∞ = maxi,j,k |ai,j,k|,

respectively.

Definition 1 (t-product [15]). The t-product between A ∈
Rn1×n2×n3 and B ∈ Rn2×n4×n3 is an n1×n4×n3 tensor C
whose (i, p)-th tube C(i, p, :) is given by

C(i, p, :) =
n2∑
j=1

A(i, j, :) ◦ B(j, p, :), (1)

where i = 1, . . . , n1, p = 1, . . . , n4, and ◦ denotes circular
convolution between two tubes of the same size. The t-product
in the original domain corresponds to the matrix multiplication
of the frontal slices in the Fourier domain.

Definition 2 (Identity tensor). The identity tensor I ∈
Rn×n×n3 is defined as follows,

I(:, :, 0) = In, I(:, :, k) = 0n, k = 2, 3, . . . , n3, (2)

where In denotes the n × n identity matrix and 0n denotes
the zero matrix of size n× n.

Definition 3 (Tensor transpose). Let A ∈ Rn1×n2×n3 , the
transpose tensor AT is an n2 × n1 × n3 tensor obtained by
transposing each frontal slice of A and then reversing the
order of the transposed frontal slices 2 through n3.

Definition 4 (Orthogonal tensor). A tensor Q ∈ Rn×n×n3 is
orthogonal if it satisfies

Q ∗ QT = QT ∗ Q = I. (3)

Definition 5 (f-diagonal tensor). A tensor A is called f-
diagonal if each frontal slice A(k) is a diagonal matrix.

Definition 6 (t-SVD [14]). The t-SVD of a third-order tensor
A ∈ Rn1×n2×n3 is given by

A = U ∗ S ∗ VT , (4)

where ∗ denotes the t-product, U ∈ Rn1×n1×n3 and V ∈
Rn2×n2×n3 are orthogonal tensors, and S ∈ Rn1×n2×n3 is a
rectangular f-diagonal tensor.

One can obtain this decomposition by performing matrix
SVDs in the Fourier domain, see Algorithm 1 for details.

Definition 7 (Tensor nuclear norm [9]). The tensor nuclear
norm ‖A‖~ of A ∈ Rn1×n2×n3 is the sum of singular values
of all the frontal slices of Â.

Algorithm 1 t-SVD
Input: A ∈ Rn1×n2×n3 .

1: Â = fft(A, [ ], 3).
2: for k = 1, . . . , n3 do
3: [U,S,V] = SVD(Â(:, :, k)).
4: Û(:, :, k) = U, Ŝ(:, :, k) = S, V̂(:, :, k) = V.
5: end for
6: U = ifft(Û , [ ], 3), S = ifft(Ŝ, [ ], 3), V = ifft(V̂, [ ], 3).

Output: U ∈ Rn1×n1×n3 , V ∈ Rn2×n2×n3 and S ∈
Rn1×n2×n3 such that A = U ∗ S ∗ VT .

B. Linear Algebra with t-product

Given an image with a size of n1 × n3, one can twist it
into a third-order tensor of size n1 × 1 × n3. The set of all
tubes in R1×1×n3 forms a ring Kn3

under standard tensor
addition and the t-product [14]. Let Kn1

n3
be the set of all n1×

1 × n3 lateral slices. In fact, the tensor with a size of n1 ×
1× n3 can be regarded as a vector of length n1, where each
element is a 1 × 1 × n3 tube fiber. It then follows that Kn1

n3

forms a free module of dimension n1 over the ring Kn3
[12],

[17]. As discussed in [10], data may be generated from shifted
copies of the generating set using t-product, and this is what
distinguishes t-linear combinations from linear combinations.
Now suppose the image samples are drawn from a union of
low-dimensional free submodules, where a free submodule is
a subset of Kn1

n3
with a generating set of dimension s < n1

[10], [12]. Our goal is to identify these free submodules and
group the data into their respective clusters.

III. PROBLEM FORMULATION

In this section, we give a brief review of structure-
constrained low-rank submodule clustering (SCLRSmC) [12],
and mathematically formulate the problem studied in this
paper. Consider a collection of images X = {Xj}Nj=1 that
belong to L different clusters, where each Xj ∈ Rn1×n3 and
N represents the number of image samples. Different from
typical subspace clustering approaches that first vectorize Xj’s
into xj ∈ Rm, m = n1n3, and then assume all these vectors
are drawn from a union of L subspaces in Rm, SCLRSmC
keeps the samples as matrices and arranges Xj’s as lateral
slices of a tensor X ∈ Rn1×N×n3 . It is then assumed that the
images belong to a union of L free submodules {`Sn1

n3
}L`=1 of

dimensions {s` < n1}L`=1. The task of submodule clustering
is to segment the sample set X according to the underlying
submodules. SCLRSmC exploits the fact that images under the
union-of-free-submodules (UoFS) model are self-expressive.
In other words, an image belonging to a union of free
submodules can be expressed as a t-linear combination of other
images. SCLRSmC seeks a low-rank representation tensor Z
by solving the following optimization problem:

min
Z
‖Z‖~ + λ1

n3∑
k=1

‖B� Z(k)‖1 + λ2‖X − X ∗ Z‖2F , (5)
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where λ1 and λ2 are penalty parameters, Z ∈ RN×N×n3 is
the representation tensor, B ∈ RN×N is a predefined weight
matrix associated with the data, and � denotes the Hadamard
product. In general, the matrix B imposes the block-diagonal
structure on each frontal slice of the representation tensor by
penalizing affinities between images from different clusters,
while rewarding affinities between images from the same
cluster.

After obtaining an optimal representation tensor Z∗, one
can define an affinity matrix W as wi,j = ‖Z∗(i, j, :)‖F +
‖Z∗(j, i, :)‖F and use spectral clustering [16] to obtain final
clustering, which solves the following problem:

min
F

tr(FT (H−W)F) s.t. F ∈ P, (6)

where F ∈ RN×L is a binary matrix indicating the member-
ship of the data points to each submodule. That is, fi,` = 1
if X (:, i, :), i.e., Xi, belongs to submodule `Sn1

n3
and fi,` = 0

otherwise. Here, H ∈ RN×N is a diagonal matrix with hi,i =∑
j wi,j and P = {F ∈ {0, 1}N×L : F1 = 1, rank(F) = L}

is the space of valid segmentation matrices with L clusters.
Existing submodule clustering methods use spectral cluster-

ing as a post-processing step, which may lead to sub-optimal
results. Our challenge is to define a metric that can quantify
the disagreement between the coefficient tensor Z and the
segmentation matrix F. First, notice that SCLRSmC imposes
a weighted sparsity constraint on each frontal slice of the
coefficient tensor Z . In order to make our final algorithm
tractable, it is reasonable to redefine the affinity matrix W
whose (i, j)-th entry is given by

wi,j =
1

2
(‖Z(i, j, :)‖1 + ‖Z(j, i, :)‖1), (7)

where ‖Z(i, j, :)‖1 =
∑n3

k=1 |zi,j,k|. For the purpose of
clustering, we expect the coefficient tensor to be submodule-
preserving, i.e., Z(i, j, :) = 0 if image samples Xi and Xj

lie in different submodules. The interaction between Z and F
can then be quantified as∑

i,j

‖Z(i, j, :)‖1(
1

2
‖f i − f j‖22) =

n3∑
k=1

‖Θ� Z(k)‖1

=
1

2

∑
i,j

wi,j‖f i − f j‖22 = tr(FT (H−W)F), (8)

where θi,j = 1
2‖f

i − f j‖22. By adding (6) into the objective
of SCLRSmC, we finally pose the problem of clustering-
aware structure-constrained low-rank submodule clustering
(CSLRSmC) in terms of the following optimization problem:

min
Z,F
‖Z‖~ + λ1

n3∑
k=1

‖B� Z(k)‖1 + λ2

n3∑
k=1

‖Θ� Z(k)‖1

+ λ3‖X − X ∗ Z‖2F
s.t. F ∈ P, (9)

where λ1, λ2 and λ3 are penalty parameters. Similar to
[12], the (i, j)-th entry of B is defined as bi,j = 1 −

Algorithm 2 Solving problem (11) using ADMM
Input: Data X , matrix B and Θ, and parameters λ1, λ2 and
λ3.
Initialize: C(0) = Q(0) = Z(0) = H(0)

1 = H(0)
2 = 0 ∈

RN×N×n3 , ρ = 1.9, µ(0) = 0.1, µmax = 1010, ε = 10−5,
and t = 0.

1: while not converged do
2: Update C, Q, and Z .
3: H(t+1)

1 = H(t)
1 + µ(t)(Z(t+1) − C(t+1)),

H(t+1)
2 = H(t)

2 + µ(t)(Z(t+1) −Q(t+1)).
4: Update µ(t+1) as µ(t+1) = min(µmax, ρµ

(t)).
5: Check convergence conditions

max


‖Z(t+1) − C(t+1)‖∞, ‖Z(t+1) −Q(t+1)‖∞
‖Z(t+1) −Z(t)‖∞, ‖C(t+1) − C(t)‖∞
‖Q(t+1) −Q(t)‖∞

 < ε.

6: Update t by t = t+ 1.
7: end while

Output: Representation tensor Z∗ = Z(t+1).

exp
(
− 1−|〈X̃ (:,i,:),X̃ (:,j,:)〉|

σ

)
, where X̃ (:, i, :) and X̃ (:, j, :) are

the normalized data points of X (:, i, :) and X (:, j, :), respec-
tively, and σ is empirically set as the mean of all 1 − |〈X̃ (:
, i, :), X̃ (:, j, :)〉|’s. The CSLRSmC encourages consistency
between the representation coefficients and the submodule
segmentation by making each frontal slice of the coefficient
tensor more block-diagonal, which can help spectral clustering
achieve the best results.

IV. OPTIMIZATION

In this section, we present an efficient algorithm for our
model (9) by alternatively solving the following two subprob-
lems:
• Fix F, find the representation tensor Z .
• Fix Z , find the clustering indicator matrix F by spectral

clustering.

A. Solution of the Representation Tensor

Given the segmentation matrix F, we first compute the
matrix Θ with θi,j = 1

2‖f
i − f j‖22. Then we compute Z by

solving the following problem:

min
Z
‖Z‖~ + λ1

n3∑
k=1

‖B� Z(k)‖1 + λ2

n3∑
k=1

‖Θ� Z(k)‖1

+ λ3‖X − X ∗ Z‖2F . (10)

To solve (10), we first introduce auxiliary variables C and
Q to make (10) separable and convert (10) to the following
problem:

min
C,Q,Z

‖C‖~ + λ1

n3∑
k=1

‖B�Q(k)‖1 + λ2

n3∑
k=1

‖Θ�Q(k)‖1

+ λ3‖X − X ∗ Z‖2F
s.t Z = C, Z = Q. (11)
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The constrained problem (11) can now be solved using the
Alternating Direction Method of Multipliers (ADMM) [18].
The augmented Lagrangian function of (11) is

L(C,Q,Z,H1,H2, µ) = ‖C‖~ + λ1

n3∑
k=1

‖B�Q(k)‖1

+ λ2

n3∑
k=1

‖Θ�Q(k)‖1 + λ3‖X − X ∗ Z‖2F + 〈H1,Z − C〉

+ 〈H2,Z −Q〉+
µ

2
(‖Z − C‖2F + ‖Z −Q‖2F ), (12)

where the tensors H1 and H2 comprise Lagrange multipliers
and µ > 0 is a penalty parameter. The ADMM optimizes (12)
iteratively by updating C, Q and Z one at a time while fixing
the others.

Updating C: By fixing other variables in (12), we can solve
C through

C(t+1) = argmin
C

‖C‖~ +
µ(t)

2
‖C − (Z(t) +

H(t)
1

µ(t)
)‖2F . (13)

This subproblem can be solved by using [13, Theorem 4.2].
Updating Q: Keeping other tensors invariant, minimization

of (12) with respect to Q yields the following update:

Q(t+1) = argmin
Q

λ1

n3∑
k=1

‖B�Q(k)‖1 + λ2

n3∑
k=1

‖Θ�Q(k)‖1

+ 〈H(t)
2 ,Z(t) −Q〉+ µ(t)

2
‖Z(t) −Q‖2F . (14)

We break (14) into n3 independent subproblems. The update
of the k-th frontal slice Q(k)(t+1)

of Q can be written as

Q(k)(t+1)

= argmin
Q

λ1‖(B +
λ2
λ1

Θ)�Q‖1

+
µ(t)

2
‖Q− (Z(k)(t) +

H
(k)(t)

2

µ(t)
)‖2F , (15)

which has a closed-form solution given in [4, Proposition 3].
Updating Z: When other tensors are fixed in (12), the

following problem of updating Z need to be solved:

Z(t+1) = argmin
Z

λ3‖X − X ∗ Z‖2F

+
µ(t)

2

(
‖Z − V(t+1)

1 ‖2F + ‖Z − V(t+1)
2 ‖2F

)
, (16)

where V(t+1)
1 = C(t+1) − H

(t)
1

µ(t) and V(t+1)
2 = Q(t+1) − H

(t)
2

µ(t) .
As described in [12], this problem can be transformed into the
Fourier domain and again decomposed into n3 subproblems,
with the k-th frontal slice of Ẑ given by

Ẑ(k)(t+1)

= (2λ3X̂
(k)T X̂(k) + 2µ(t)I)−1(

2λ3X̂
(k)T X̂(k) + µ(t)(V̂

(k)(t+1)

1 + V̂
(k)(t+1)

2 )
)
. (17)

After updating Ẑ(t+1), one can obtain Z(t+1) by setting
Z(t+1) = ifft(Ẑ(t+1), [ ], 3). The ADMM algorithm for
solving problem (11) is summarized in Algorithm 2.

Algorithm 3 CSLRSmC
Input: Data X , matrix B and Θ, and parameters L, λ1, λ2
and λ3.
Initialize: Θ = 0.

1: while not converged do
2: Given F, solve problem (10) via Algorithm 2 to obtain
Z;

3: Given Z , solve problem (19) via spectral clustering to
obtain F;

4: end while
Output: Segmentation matrix F.

B. Spectral Clustering
When the representation tensor Z is available, problem (9)

reduces to the following problem:

min
F

∑
i,j

‖Z(i, j, :)‖1(
1

2
‖f i − f j‖22) s.t. F ∈ P, (18)

Based on (8), this problem is equivalent to the following
problem:

F̂ = argmin
F

tr(FTΦF) s.t. F ∈ P, (19)

where Φ = H −W is the graph Laplacian of the matrix
W with wi,j = 1

2 (‖Z(i, j, :)‖1 + ‖Z(j, i, :)‖1), and H is a
diagonal matrix whose diagonal entries are hi,i =

∑
j wi,j .

To make the problem tractable, we relax the constraint F ∈ P
to FTHF = I and solve

F̂ = argmin
F

tr(FTΦF) s.t. FTHF = I, (20)

which can be solved efficiently by eigendecomposition.
Specifically, by letting F̃ = H

1
2 F, instead of solving F,

we solve for F̃, whose optimal solution is given by the
eigenvectors of the matrix H−

1
2 ΦH−

1
2 associated with its

smallest L eigenvalues. The rows of F̃ are then used as input
to the k-means algorithm and the clustering result is used to
generate the binary matrix F ∈ {0, 1}N×L such that F1 = 1.
The complete algorithm is outlined in Algorithm 3.

V. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of our proposed
method on MNIST [19], USPS [20] handwritten datasets and
Weizmann1 face dataset. We compare the performance of
CSLRSmC with those obtained using several state-of-the-art
clustering methods, namely, SCLRSmC [12], SSmC [10], SSC
[3], LRR [2], SC-LRR [4], S3C [8], and LSR [1]. Note that
in SCLRSmC, the affinity matrix W is defined in [12], i.e.,
wi,j = ‖Z(i, j, :)‖F + ‖Z(j, i, :)‖F , whereas in SCLRSmC†

we use the similarity defined in (7). For all these methods, we
tune the parameters to achieve their best performance. Since
the first iteration of CSLRSmC is equivalent to SCLRSmC†,
the parameters λ1 and λ3 in CSLRSmC are set to be the same
as λ1 and λ2 for SCLRSmC†, respectively. Finally, we fix
λ2 = 0.001 for all experiments.

1http://www.wisdom.weizmann.ac.il/∼/vision/FaceBase/
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TABLE I
CLUSTERING ACCURACY (%) ON DIFFERENT DATASETS

CSLRSmC SCLRSmC† SCLRSmC SSmC SSC LRR SC-LRR S3C LSR
MNIST 81.33 79.33 79.87 69.20 51.20 49.33 52.13 50.27 47.73
USPS 62.20 59.80 60.20 60.00 38.80 47.40 52.20 27.40 40.80

Weizmann 89.17 84.17 58.33 75.00 45.00 56.67 49.17 47.50 35.00

The MNIST dataset [19] comprises a collection of 28 ×
28 images of handwritten digits. Similar to [12], we consider
clustering of digits {2, 4, 8} and randomly select 100 images
of each of these digits; hence N = 300. We add a random (left
or right) 3-pixel horizontal shift to each image. The results,
averaged over 20 random trials, are listed in the second row of
Table I, from which we make two observations. First, all the
submodule clustering approaches perform better than subspace
clustering methods. This is because the UoFS model is robust
against spatial shifts. Second, although SCLRSmC† performs
slightly worse than SCLRSmC, CSLRSmC performs better
than all other approaches.

The USPS dataset [20] consists of 9298 images of 10
subjects, corresponding to 10 handwritten digits. Each image
has 16×16 pixels. We use the first 50 images of each digit in
our experiment; resulting N = 500. We again randomly shift
the digits horizontally with respect to the center by 3 pixels
either side (left or right). Experimental results are presented
in the third row of Table I. It can be inferred that CSLRSmC
obtains the best performance compared to other approaches
on this dataset.

Our last set of results corresponds to the Weizmann face
dataset. We select images of the first 4 individuals and the total
number of images is N = 120. For each image, we reduce the
original size of the image by first downsampling by factor of 4,
followed by cropping it into 120× 80 pixels. Note that due to
variations in pose, the data can be well modeled using UoFS.
The clustering results are reported in the last row of Table I.
We can see that our proposed method again outperforms all
other methods.

VI. CONCLUSION

In this paper, we proposed a novel approach for submodule
clustering of third-order tensor data. By using t-product based
on circular convolution, the data tensor is represented as
the t-product of the tensor itself and a low-rank tensor. The
proposed method integrates spectral clustering into a unified
framework, and by solving a joint optimization problem, our
method is able to find the optimal coefficient tensor which
helps spectral clustering achieve the best clustering results.
Experimental results on three real-world datasets demonstrated
the effectiveness of the proposed method.
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